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Abstract Implicated as a key structure in the patho-
physiology of schizophrenia, the hippocampus is at the
forefront of neuropathological and neuroimaging re-
search. To elucidate the cellular basis of hippocampal
pathology in schizophrenia, we studied the postmortem
hippocampal sections of 16 patients suffering from
schizophrenia and 16 controls applying the gray-level
index (GLI) method. We determined the area-percent-
age covered by neuronal perikarya in relation to the
total area of the pyramidal cell layer in the four subdi-
visions of the ammon’s horn (cornu ammonis, CA1–4)
bilaterally. Additionally, we determined the area size of
the pyramidal cell layer (CA1–4) and dentate gyrus
(DG) granule cell layer. Results showed no significant
differences between diagnostic groups with respect to the
dependent variables, supporting the view that there is no
primary alteration of hippocampal gray matter in
schizophrenia.
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Introduction

Human hippocampal formation is critical for declarative
memory (Scoville and Milner 1957), the dysfunction of
which may impair reality testing and contribute to the

schizophrenia phenotype. Substantial support for the
hypothesis of hippocampal pathology in schizophrenia
comes from in vivo neuroimaging research. Structural
imaging studies have detected abnormalities of hippo-
campal size (meta-analytically reviewed in Lawrie and
Abukmeil 1998; Nelson et al. 1998; Wright et al. 2000)
and shape (Csernansky et al. 2002). A decrease in hip-
pocampal volume (approximately 4% according to
Nelson et al. 1998) is already present in subjects at risk
(Lawrie et al. 1999; Pantelis et al. 2003) and patients
with first-episode schizophrenia (Bogerts et al. 1990;
Velakoulis et al. 1999), making it one of the most robust
structural abnormalities in schizophrenia (Heckers and
Konradi 2002). Hippocampal volume is not reduced in
bipolar disorder (Altshuler et al. 2000) and schizotypal
personality disorder (Dickey et al. 2002), indicating that
this parameter is of high diagnostic specificity and
may represent an endophenotype for schizophrenia
(Gottesman and Gould 2003; Zobel and Maier 2004).

Functional imaging studies of schizophrenia have
identified altered hippocampal activity in relation to
psychotic symptoms (Friston et al. 1992), attentional
deficits, and declarative memory impairment (e.g.,
Heckers et al. 1998; Jessen et al. 2003; Weiss et al. 2004).
Proton magnetic resonance spectroscopy (1H-MRS) has
revealed a decrement of hippocampal N-acetyl aspartate
(NAA) signal in schizophrenia, hence implicating a
neuronal pathology (e.g., Bertolino et al. 1998).

By contrast, despite the plethora of postmortem
morphometric studies, no consensus has yet evolved on
the presence or nature of cytoarchitectonic abnormali-
ties corresponding to hippocampal dysfunction in
schizophrenia (Dwork 1997). Neuropathological find-
ings of the altered morphology of the hippocampus and
its neuronal organization, including presynaptic and
dendritic parameters, suggest disturbances of functional
circuitry within the hippocampus and its extrinsic con-
nections particularly to the prefrontal cortex (reviewed
by Harrison 2004).

To address the question of whether a decrease in
hippocampal volume (Bogerts et al. 1985; Lawrie and
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Abukmeil 1998; Nelson et al. 1998; Wright et al. 2000)
might result from gray matter changes, we studied
postmortem hippocampal sections of 16 patients suf-
fering from schizophrenia and 16 controls, applying the
gray-level index (GLI) method. We determined the area-
percentage covered by neuronal cell perikarya in relation
to the total area of the pyramidal cell layer in each of the
four subdivisions of the ammon’s horn bilaterally. In
addition, we determined the area sizes of the pyramidal
cell layer (CA1–4) and granule cell layer (DG).

Material and methods

Brain collection

We studied the hippocampal formation in the brains of
16 patients suffering from schizophrenia (eight females;
mean age: 53.3±7.5 years; duration of illness:
21.9±9.8 years) compared to the brains of 16 control
subjects (eight females; mean age: 55.7±10.5 years)
collected between 1985 and 1995. A detailed survey of
descriptive statistics of intervening variables (brain
weight, postmortem delay, and formalin time) of the
brain series has been given by Vogeley et al. (2003).
Before autopsy, informed consent was obtained from the
nearest relative or from responsible authorities in cases
under legal care. Study procedures were approved by the
local ethics committee of the Heinrich-Heine-University
in Duesseldorf. Patients with systemic illness, alcohol or
drug abuse disorders were excluded. At the time of
death, most patients were treated with antipsychotic
medication; total dosage over the last 6 months of life is
available for all patients (Vogeley et al. 2003). Schizo-
phrenia was diagnosed by two experienced psychiatrists
according to DSM-III-R and ICD-9 criteria.

Staining and image acquisition

After formalin fixation, the tissue was embedded in
paraffin and serial coronal sections perpendicular to the
anterior–posterior commissure line, 20 lm in thickness,
were cut using the same microtome under identical
environmental conditions as a control for variance in
section thickness. Modified Gallyas silver staining
(Merker 1983) was performed on every 50th slice. From
each subject, one section on the level of the lateral
geniculate body was taken to create microscopic images
of the hippocampal formation that were blinded with
respect to subject and diagnosis. Images were acquired
as digitized gray level (8 Bit) raw images with a CCD
camera (SONY�) attached to a light microscope (Zeiss
Planpro� 6.3·1.25, Germany) with a lens magnification
of 10. The brightness was controlled by the histogram of
the gray tones in the images, and adjusted to comparable
values in all cases. Video frames corresponded to
microscopic fields of approximately 1250·986 lm in size
as assessed by a calibration standard. Adjoining video

frames were obtained automatically using a computer-
driven scanning table (Maerzhaeuser�, Wetzlar, Ger-
many). An expanded digitized image assembled from
approximately 100 adjoining frames was reconstructed
semi-automatically and entered into further analyses
(Optimas 6.0). According to cytoarchitectonic criteria
(West and Gundersen 1990; Arnold 2000), we manually
delineated the outlines of (i) the pyramidal cell layer in
each ammonic segment (CA1–4) and (ii) the granule cell
layer (DG). These five outlines per case were used to
produce mask images which were postprocessed and
analyzed as follows.

Image processing and GLI measurement

A grid of measurement fields (60·60 lm) was generated
covering the regions of interest. All image-processing
steps as described were performed in each and every
measurement field separately (OPTIMAS 6.0): First, a
smoothing filter (median filter 3·3) was applied to cor-
rect for local inhomogeneities of the gray value distri-
bution in the measuring field. Second, a local threshold
was obtained at the local minimum of the typically bi-
modal gray value frequency histogram according to
which gray level images were binarized. Third, a binary
erosion operation was performed in three cycles fol-
lowed by two dilation operations to cut apparent con-
nections between adjacent cells. Fourth, a filling
operation was used to correct for holes in the area of the
perikarya profiles (Wree et al. 1982). Fifth, the area
percentage of perikarya was calculated and averaged
across all measurement fields of one particular subre-
gion. The dependent measure of the GLI gives the area-
percentage covered by stained perikarya in the subre-
gions. The DG was segmented employing an adaptive
threshold after spatial filtering (median filter 3·3). As
DG granule cells are densely packed, the GLI was not
expected to be informative and remained undetermined
for this region. Therefore, only the area covered by
stained granule cell perikarya was measured and entered
into statistical analysis. Image processing steps are
shown in Fig. 1.

Statistical analysis

The GLI signal obtained for the pyramidal cell layer of
each ammonic subfield (CA1–4) as well as the area sizes
of the pyramidal cell layer (CA1–4) and granule cell
layer (DG) were used as dependent variables. As as-
sessed by correlation analyses, none of the intervening
variables described by Vogeley et al. (2003) was identi-
fied as a confounding factor and therefore not consid-
ered as a covariate in statistical testing. The statistical
analyses of the diagnostic effect on the dependent vari-
ables were performed with repeated measure analyses of
variance (ANOVAs), one for each parameter, GLI
(CA1–4) and area size (CA1–4 and DG). Subfield and
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side were within-subjects factors; diagnosis was entered
as a between-subjects factor. As schizophrenia might
affect hemispheres and hippocampal subfields differen-
tially, we tested for interactions of diagnosis · side and
diagnosis · subfield.

Results

The ANOVAs revealed neither a significant effect of
diagnosis with respect to both area-percentage (F1,30<1,
p>0.05) and area size (F1,30<1, p>0.05), nor significant
diagnosis · side and diagnosis · subfield interactions.
Neuron densities as reflected by the GLI as well as area
sizes (mm2) of the pyramidal cell layer (CA1–4) and
granule cell layer (DG) are given in Table 1.

Discussion

The applied automatized image analysis method served
as a scanning tool to investigate whether any patho-
logical processes affecting hippocampal gray matter
(pyramidal cell layer and DG granule cell layer) are
present in schizophrenia. The main finding of this study
is the absence of gray matter changes in the hippocam-
pus in schizophrenia. However, as only coronal hippo-
campal sections at the level of the lateral geniculate body
were assessed, abnormalities localized in the functionally
distinct more anterior or posterior compartments along
the rostrocaudal hippocampal axis (Strange et al. 2005)
might have escaped verification. Since the lateral genic-
ulate body has a spatial extent of up to several milli-
meters, we cannot rule out the possibility of histological
variation across hippocampal sections as a confounding
factor. Furthermore, the orientation of the studied
hippocampal sections may slightly vary across brains. In
addition, the GLI data might vary due to differences in
irradiated brightness as the structures depicted in the
reference images are not identical across specimens. To
compensate for this source of variability, binary images,
based on a local threshold given by the minimum of a

bimodal gray level histogram, were produced for seg-
mentation. Note that minor differences in lighting may
influence the mean value of a gray level histogram, but
leave the histogram distribution and the proportion of
bright and dark areas unaffected.

Although a loss of hippocampal neurons in schizo-
phrenia is discussed in the literature, only two studies
have reported decreases in neuron density (Jeste and
Lohr 1989; Jonsson et al. 1997). By contrast, several
studies failed to detect abnormal neuron densities (Benes
et al. 1991; Arnold et al. 1995), and one study revealed a
right-sided increase (Zaidel et al. 1997a). The observed
discrepancies might result from normal variation in the
cytoarchitecture of the hippocampal formation, meth-
odological restrictions including case selection, and dif-
ferential influence of subfield or hemisphere on
hippocampal pathology in schizophrenia (Dwork 1997).
Single findings of an altered neuronal density restricted
to a specific neuronal subtype (Benes et al. 1998), sub-
field or hemisphere (Zaidel et al. 1997b) deserve further
investigation. The fact that existing stereological studies
of the hippocampus in schizophrenia detected no dif-
ference in pyramidal cell density in any hippocampal
subfield (Heckers et al. 1991; Walker et al. 2002; Highley
et al. 2003) supports our conclusion that decreased
hippocampal volume in schizophrenia is not due to
selective gray matter changes but instead might arise
from reduced hippocampal white matter (stratum or-
iens, stratum radiatum/lacunosum/moleculare) (Heckers
et al. 1991; Heckers and Konradi 2002).

We addressed the question of regional specificity of
changes in schizophrenia by dividing the hippocampus
into five subfields which differ with respect to their cyt-
oarchitecture, function, and susceptibility to schizo-
phrenia (Harrison 2004). For instance, CA1—although
vulnerable in Alzheimer’s disease (West et al. 1994) and
hypoxic brain injury (Petito et al. 1987)—is less affected
in schizophrenia, concerning dysregulation of synaptic
proteins and neurotransmitter receptors, while CA4
shows the reverse profile (Harrison 2004). However,
consistent with stereological studies, we found no sig-
nificant interaction of the factors diagnosis and subfield

Fig. 1 a Coronal cross-section of the hippocampal body b illustrating the histological delineation of the ammonic subfields CA1–4
(pyramidal cell layer) and dentate gyrus (granule cell layer). c Typical aspect after image postprocessing (masking and binarization). The
gray-level index (GLI) provides the area-percentage covered by stained perikarya (white) relative to the total area of the measurement field.
CA1–4 cornu ammonis segments 1–4 (pyramidal cell layer), DG dentate gyrus (granule cell layer)
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in our study, implying that a potential regional weight-
ing of neurochemical anomalies is not necessarily re-
flected by morphometric indices.

The present study has been performed on a series of
postmortem brains on which reports have already been
published regarding schizophrenia-related cytoarchitec-
tonic abnormalities in Brodmann area 10 (Kawasaki
et al. 2000; Vogeley et al. 2003). In these studies, disease-
specific disturbances were detected that were absent in
the present study, suggesting that the hippocampus
proper might be less susceptible to disturbances of
neuronal composition than adjacent cortices in schizo-
phrenia. For instance, morphometric studies of the en-
torhinal cortex in schizophrenia detected misplaced and
aberrantly clustered pre-alpha cells—a cell type that
gives rise to the perforant pathway, the major excitatory
input to the hippocampus (Jakob and Beckmann 1986;
Falkai et al. 2000). Such dysplastic changes might
compromise hippocampal input and output pathways in
schizophrenia, compatible with recent findings of hip-
pocampal GABA(A) and AMPA/kainate glutamate
receptor dysregulation in schizophrenia (reviewed by
Heckers and Konradi 2002).
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