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The prevalence of autism spectrum disorder (ASD) is as high as 1 in 100 individuals and is a heavy burden to society. Thus, identifying
causes and treatments is imperative. Here, we briefly review the topics covered in our 2012 Society for Neuroscience Mini-Symposium
entitled “Integrative Approaches Using Oxytocin to Enhance Prosocial Behavior: From Animal and Human Social Behavior to ASD’s
Social Dysfunction.” This work is not meant to be a comprehensive review of oxytocin and prosocial behavior. Instead, we wish to share
the newest findings on the effects of oxytocin on social behavior, the brain, and the social dysfunction of ASD at the molecular, genetic,
systemic, and behavior levels, in varied subjects ranging from animal models to humans suffering from autism for the purpose of
promoting further study for developing the clinical use of oxytocin in treating ASD.

Introduction
Recent worldwide epidemiological studies have shown that at least 1
in every 100 people has some form of autism spectrum disorder
(ASD) (Brugha et al., 2011; Kim et al., 2011; Autism and Develop-
mental Disabilities Monitoring Network Surveillance Year 2008
Principal Investigators and CDC, 2012). However, there is no estab-
lished pharmacological treatment for social dysfunction, the core
feature of ASD. Thus, identifying the cause and treatment is imper-
ative. Although an intensive search for the biological markers of ASD
has provided some major advances in the understanding of genetic,
neurobiological, and developmental underpinnings, many aspects
of the disease spectrum are still poorly understood.

In the past decade, research from various fields has revealed that
oxytocin (OT) plays an important role in social interactions that
goes far beyond the previously documented effects in female repro-
duction (Carter, 2007; Donaldson and Young, 2008). Humans ex-
posed to OT make more eye contact, feel increased in-group trust,
and are better able to infer emotions from other peoples’ facial ex-
pressions (Bartz et al., 2011a; Meyer-Lindenberg et al., 2011;
Striepens et al., 2011; Van Ijzendoorn and Bakermans-Kranenburg,

2012). The beneficial roles of OT on social functioning led us to
wonder whether the substance is possibly useful for ASD therapy.
Clinical application of OT in the treatment of this disorder can pro-
vide some recourse to afflicted individuals and their families. Al-
though pioneering clinical studies support this notion (Hollander et
al., 2007; Andari et al., 2010; Guastella et al., 2010), much remains to
be learned about the mechanisms by which OT modulates social
behavior before it is ready for clinical use. Specifically, little is known
about the mechanistic effects of OT on social brain circuits, which
are at the core of the observed behavioral changes.

To facilitate the use of OT treatment for the social deficits of ASD,
findings on the mechanisms of OT therapy on social effects and its
neural underpinnings should be integrated from diverse research
fields from basic animal models to clinical studies. With this in mind,
we will share the newest findings from various laboratories from
around the world in our 2012 Society for Neuroscience Mini-
Symposium as well as in this review. Although we share an interest in
OT’s effect on social behavior, our research covers a wide spectrum
of modalities, including molecular biology, genetics, functional and
structural neuroimaging, behavioral research, and clinical research.
The study subjects also range broadly from experimental animals to
nonclinical and clinical human populations.

Animal models: oxytocin, functional neural connectivity, and
the promotion of social cohesion during an environmental
stressor
Although there is mounting evidence implicating OT in socio-
emotional disorders in humans (Jacob et al., 2007; Goldman et
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al., 2008, 2011; Rubin et al., 2011; Dai et al., 2012), research using
animal models, including rats, sheep, and mice (Winslow et al.,
2000; Choleris et al., 2007; Leng et al., 2008; Nowak et al., 2011;
Gabor et al., 2012), has been a catalyst by identifying basic behav-
ioral processes, such as social recognition, parental bonding, and
social antagonism, mediated or modulated by OT that become
dysregulated in human mental illness. Prairie voles, in particular,
have been useful in revealing OT’s role in human sociality largely
because they share with humans the tendency toward forming
selective preferences for familiar conspecifics (Williams et al.,
1992). In the context of mating and reproduction, this tendency
is expressed as a selective preference to spend time with a bonded
mate over an unfamiliar conspecific (Williams et al., 1992; Carter
and Keverne, 2002). Biological adaptations that facilitate selective
social preference likely arise because they offer adaptive benefits,
helping individuals efficiently overcome the many stressors and
challenges associated with survival and reproduction throughout
the lifespan (Carter, 1998; Porges, 2003a). Selective social prefer-
ence is integral to the expression of specific social behaviors,
functioning heuristically to facilitate or inhibit the motivation to
approach, avoid, or remain behaviorally quiescent across a wide
range of varying social contexts (Porges, 2003b; Carter et al.,
2008; McCall and Singer, 2012). In the context of stress, activa-
tion of the OT system may promote approach toward, affiliation
with, and maintenance of proximity between familiar individuals
(Engelmann et al., 1996; Carter and Altemus, 1997; Young,
2002). Indeed, OT signaling in areas such as the paraventricular
nucleus of the hypothalamus and central amygdala play a critical
role in modulating responses to stressful, fearful, and anxiety-
provoking stimuli (Neumann et al., 2000a,b, 2002; Huber et al.,
2005; Viviani et al., 2011). Behaviors that increase proximity be-
tween familiar individuals would allow more coordinated re-
sponses to stressful stimuli, such as sharing vigilance during
stressful events that impact a social group (Carter and Altemus,
1997; McCarthy and Altemus, 1997; Silk et al., 2003; Silk and
House, 2011; Seyfarth and Cheney, 2012). OT function appears
to be essential to group cohesion in prairie voles (Carter et al.,
1992; Cho et al., 1999) and in a variety of other species. Cohesive-
ness of mother–litter aggregations in rats increased with OT pre-
treatment (Kojima and Alberts, 2011), and inhibition of the OT
system by antagonist administration in marmosets (Smith et al.,
2010) and rats (van Leengoed et al., 1987) or OT receptor knock-
out in mice (Pobbe et al., 2012) resulted in decreased huddling
behavior. Recent research with prairie voles by one of the authors
(J.Y.) and his coresearchers suggests that OT treatment in the
context of stress may shift functional neural connectivity in a
manner that promotes social cohesion when there is a natural
impulse to disperse. Systemic pretreatment of OT before a brief
flooded cage stressor (which may mimic the threat of a flooded
burrow in nature) resulted in a greater amount of time spent in
sedentary social contact after being returned to the home cage.
Voles pretreated with OT displayed elevated concentrations of
plasma OT 95 min following the original injection, suggesting
positive feedback potentiation of OT release in the context of
environmental stress similar to that seen in the context of partu-
rition (Russell et al., 2003). OT pretreatment did not change
overall neural activation as measured by Fos expression in the
paraventricular nucleus of the hypothalamus (PVN), a brain re-
gion critically involved in coordinating neuroendocrine and au-
tonomic responses to stress. However, voles pretreated with OT
displayed functional coupling between the PVN and cardioregu-
latory areas in the brainstem; blocking OT activity with an antag-
onist resulted in decoupling of activity in the PVN and brainstem,

as was seen in voles pretreated with saline. Interestingly, func-
tional coupling with the PVN was seen in brainstem nuclei that
exert both sympathetic (rostral ventrolateral medulla) and
parasympathetic (dorsal vagal complex and nucleus ambigu-
ous) influences on the heart. OT pretreatment unexpectedly re-
sulted in a trend toward heightened glucocorticoid levels, but this
may in fact be adaptive during an environmental threat that ne-
cessitates mobilization (J.R. Yee, S.W. Porges, and C.S. Carter,
unpublished observations). In conclusion, this new research sug-
gests that OT may function as an antistress hormone by changing
physiology and neural connectivity in a manner that facilitates
social cohesion in the face of environmental threats that may
otherwise promote dispersal.

Evidence for a neuromodulatory role of oxytocin in human
social cognition and behavior
Current perspectives on the neuromodulatory effects of OT in
the domain of human social cognition and behavior emphasize
its potency as a facilitator of sociality. The basis of this prevailing
view has progressed from animal research documenting a pivotal
role of OT in promoting social bonding and attachment (Insel,
1992; Young et al., 1998; Insel and Young, 2001; Kendrick, 2004;
Neumann, 2009; Insel, 2010) and controlling fear and stress re-
sponses (Neumann, 2002; Huber et al., 2005; Lukas et al., 2011;
Viviani et al., 2011; Knobloch et al., 2012) to pharmacological
challenge studies in healthy humans, which demonstrated bene-
ficial effects of intranasal single-dose (24 – 48 IU) administration
of OT on behavioral responses in various social-economic and
social-cognitive tasks. These tasks have addressed, for instance,
interpersonal trust and cooperation (Kosfeld et al., 2005; De
Dreu, 2011), generosity (Zak et al., 2007), social recognition
memory (Guastella et al., 2008a; Savaskan et al., 2008; Rimmele et
al., 2009), social reinforcement learning and emotional empathy
(Hurlemann et al., 2010), assessments of facial attractiveness and
trustworthiness (Theodoridou et al., 2009), and self-perception
(Cardoso et al., 2012). However, recent studies contrast with the
notion that OT exerts uniformly positive effects on human social
cognition and behavior in showing that the peptide can also pro-
mote envy and gloating (schadenfreude) (Shamay-Tsoory et al.,
2009), ethnocentrism (including prejudice, xenophobia, and ra-
cial bias) (De Dreu et al., 2011), and outgroup derogation (De
Dreu et al., 2010). In addition, OT has been implicated in im-
peded trust and cooperation as well as in negatively biased recol-
lections of maternal care and closeness in insecurely or anxiously
attached individuals (Bartz et al., 2010, 2011b). In an attempt to
reconcile these conflicting findings, it has been hypothesized that
the effects of OT on human social cognition and behavior result
from reduced anxiety and/or reflect increased perceptual salience
of social cues (Bartz et al., 2011a). The anxiolytic action of the
peptide has indeed been shown as decreased endocrine and sub-
jective responses to social stress (Heinrichs et al., 2003) or as
reduced negative cognitive self-appraisal in individuals scoring
high in trait anxiety (Alvares et al., 2012), whereas the social
salience hypothesis has gained considerable support from studies
showing increased eye contact (Guastella et al., 2008b) and im-
proved “mind reading” from facial gestures (Domes et al., 2007a)
following administration of OT. Whether these mechanisms ul-
timately yield positive or negative social outcomes may vary as a
function of context and/or person-specific features (Bartz et al.,
2011a). An alternative concept argues that emotional valence
may be the dominant factor guiding the effects of OT on human
social cognition and behavior, with OT promoting social ap-
proach to positive cues and inhibiting social withdrawal from
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negative ones (Kemp and Guastella, 2011). However, the neuro-
modulatory role of OT is not only extensively studied in healthy
humans with the purpose of unraveling the psychobiological sub-
strates of its social effects— based on a rapidly growing number of
baseline plasma-level studies and treatment trials in clinical pop-
ulations—it is also beginning to emerge as a target for adjunctive
therapy of social-behavioral dysfunction in several mental disor-
ders (Striepens et al., 2011), including ASD (Hollander et al.,
2003, 2007; Andari et al., 2010; Guastella et al., 2010), borderline
personality disorder (Bartz et al., 2011b; Simeon et al., 2011),
schizophrenia (Feifel et al., 2010; Goldman et al., 2011; Pedersen
et al., 2011), and social phobia (Guastella et al., 2009; La-
buschagne et al., 2011). This clinical translation, if proven to be
feasible, would substantially extend and make innovations in cur-
rent treatments of these disorders.

The neural substrates for effects of oxytocin on human social
cognition and behavior
Pharmaco-functional-MRI (fMRI) studies involving intranasal
OT administration are helping to elucidate the neural mecha-
nisms of OT’s effects on human social cognition. Initial studies
focused on face processing. These studies showed that OT mod-
ulates amygdala activity when viewing human face stimuli in a
sexually dimorphic manner, with OT generally decreasing
amygdala activation to emotional faces in men (Kirsch et al.,
2005; Domes et al., 2007b; Petrovic et al., 2008) but increasing it
in women (Domes et al., 2010). OT also seems to increase
amygdala activation to threatening scenes in women (Lischke et
al., 2012). In men, but not women, these results are consistent
with the known anxiolytic effects of OT (Heinrichs et al., 2009).
OT also decreases functional connectivity between the amygdala
and brainstem effector sites of the autonomic nervous system
during emotional face viewing in men (Kirsch et al., 2005). On
the other hand, OT increases amygdala functional connectivity
with a key mentalizing region, the medial prefrontal cortex, at
rest (Sripada et al., 2012). Higher-resolution imaging studies
have now begun to elucidate the specific amygdala subregions
responsible for these effects (Gamer et al., 2010). Intranasal OT
has also been shown to normalize heightened amygdala and me-
dial prefrontal cortex activity associated with social anxiety dis-
order (Labuschagne et al., 2010, 2011). Given OT’s role in
motivating maternal care, recent studies have investigated its
ability to modulate the neural response of women to infant cries
and laughter (Riem et al., 2011, 2012). Results were interpreted to
suggest that OT suppresses the aversive response to infant crying,
represented in the amygdala, while augmenting the empathic re-
sponse, represented in the insula. Finally, OT’s effect on brain
activity has been studied during social interaction, where it has
been shown to dampen men’s amygdala response to the feedback
that a social partner is not trustworthy (Baumgartner et al., 2008).
In nonhuman experimental animals, OT interacts with DA in the
ventral striatum to promote social bonding (Young et al., 2005;
Skuse and Gallagher, 2009). However, evidence for similar mech-
anisms in humans is limited to correlations between ventral stria-
tum activity and plasma OT levels (Strathearn et al., 2009; Atzil et
al., 2011). A recent study from one of the authors’ (J.R.) labora-
tory asked whether OT would augment the ventral striatum re-
sponse to a cooperative exchange with a same-sex but unfamiliar
person (Rilling et al., 2012). In a double-blind, placebo-
controlled study, 91 men between the ages of 18 and 22 years
(mean, 20.2 years) were randomized to receive intranasal OT
(n � 27), intranasal vasopressin (AVP) (n � 27) or intranasal
placebo (n � 36). Afterward, they were imaged with fMRI as they

played four sessions of a 30-round, sequential-choice iterated
prisoner’s dilemma game with either computer or assumed hu-
man partners. Relative to both AVP and placebo, OT increased
the caudate nucleus response to reciprocated cooperation, which
may augment the reward of reciprocated cooperation and/or fa-
cilitate learning that another person can be trusted. Moreover,
the caudate nucleus response to reciprocated cooperation was
positively correlated with plasma OT levels. OT also enhanced
left amygdala activation in response to reciprocated cooperation.
Finally, OT was associated with decreased amygdala functional
connectivity with the brainstem compared with placebo (as ex-
pected), and increased amygdala functional connectivity with
both the ventral anterior insula and the inferior lateral temporal
cortex. These latter results suggest that OT may enhance the
amygdala’s ability to elicit subjective feeling states and enhance
attention to salient social stimuli.

The role of the oxytocin receptor gene (OXTR) in human
social stress and cognition
Molecular genetics provides a means of studying how naturally
occurring variation in the human OT system relates to brain
function and behavior. The OT receptor gene (OXTR) is located
on chromosome 3p25, spans 17 kb (Inoue et al., 1994), and en-
codes a 389 aa polypeptide with seven transmembrane domains
belonging to the class I G-protein-coupled receptor family
(Gimpl and Fahrenholz, 2001). Genetic variation influencing the
number, organization, or functioning of OT receptors would be
expected to influence the efficacy of the OT signal in the brain.
Indeed, initial studies have linked variation in OXTR to suscep-
tibility for mental disorders characterized by social deficits, such
as ASD (Wu et al., 2005; Jacob et al., 2007; Lerer et al., 2008;
Yrigollen et al., 2008; Gregory et al., 2009; Tansey et al., 2010;
Wermter et al., 2010; Campbell et al., 2011), schizophrenia
(Montag et al., 2012), and severe aggressive behaviors in child-
hood (Malik et al., 2012).

Two intronic single-nucleotide polymorphisms (SNPs),
rs53576 and rs2254298, linked to susceptibility for ASD have in
several subsequent studies also been associated with socio-
emotional functioning in healthy individuals. The A allele of
rs53576 has been associated with a larger startle response and
reduced emotion-reading abilities (Rodrigues et al., 2009), re-
duced maternal sensitivity (Bakermans-Kranenburg and van
Ijzendoorn, 2008), fewer affiliative displays (Kogan et al., 2011),
reduced trust (Krueger et al., 2012), increased hormonal and
neurocardiac reactivity to social stress (Norman et al., 2012), and
lower optimism, mastery, and self-esteem (Saphire-Bernstein et
al., 2011). The AA genotype of rs53576 has been associated with
reduced positive affect in men (Lucht et al., 2009) and a reduced
tendency to seek social support during distress when such behav-
ior is culturally normative (Kim et al., 2010). Furthermore, the
AA genotype of rs53576 has been associated with reduced phys-
iological and psychological responsiveness to social support from
a close friend before acute stress (Chen et al., 2011b). Variation at
rs2254298 has been associated with prosociality (Israel et al.,
2009); trait empathy (Wu et al., 2012); attachment anxiety in
females and autism-spectrum quotient in males (Chen, 2012);
infant– caregiver attachment security in non-Caucasians (Chen
et al., 2011a); and parental touch during interactions with infants
(Feldman et al., 2012).

Less scientific attention has been directed so far to the exam-
ination of other common genetic variants in OXTR, although a
clear increase in interest is evident in the recent literature. A
particularly interesting example is rs2268498 (T/C), a functional
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polymorphism in the promoter region of the gene that contrib-
utes to moral judgments (Walter et al., 2012) and negative emo-
tionality (Montag et al., 2011), as well as the intronic variant
rs7632287 (G/A) that has been associated with childhood social
behavior and adult pair-bonding (Walum et al., 2012) as well as
susceptibility to ASD (Campbell et al., 2011). In addition,
rs1042778 has also been associated with prosocial decision mak-
ing (Israel et al., 2009) and parental touch (Feldman et al., 2012).
However, a few null or contrasting effects have also been reported
in studies examining these and other SNPs (Gillath et al., 2008;
Apicella et al., 2010; Tansey et al., 2010).

Clearly, open questions remain regarding the patterns of associ-
ations obtained using the molecular genetic approach. Some of these
questions may be resolved through replication studies, testing of
larger sample sizes, and more comprehensive haplotype-based anal-
yses. In addition, more studies examining functional interaction of
OXTR genetic variation with other candidate genes that modulate
the secretion of OT such as CD38 (Feldman et al., 2012), and other
neurotransmitter cascades in brain such as the dopaminergic and
serotonergic system (Luijk et al., 2011) (Montag et al., 2011) are
needed. A pharmacogenetic approach, associating genetic variability
with individual differences in response to intranasal OT (Marsh et
al., 2012), may also help to clarify a mechanism through which in-
tronic genotypic variability could have functional consequences.

The molecular genetic approach has made several contribu-
tions to OT research. First, it demonstrates that the effects of
intranasally administered OT have parallels in naturally occur-
ring individual differences. Second, it provides a means of study-
ing OT system function in individuals (e.g., in infants and
children, pregnant women, or lactating mothers) for whom OT
administration could be problematic. In addition, this approach
may also help to explain some of the individual response variabil-
ity to OT administration that has been observed in prior studies.
In combination with other fruitful methodologies, this approach
promises to provide future insights regarding the human OT
system.

Neurogenetic effects of social risk variants in OXTR on limbic
structure and function
At the neural systems level, both human social behavior and so-
cial stress processing are shaped by a key regulatory circuitry
including the amygdala, anterior cingulate cortex (ACC) and hy-
pothalamus (Lederbogen et al., 2011; Meyer-Lindenberg et al.,
2011). The structural and functional anatomy of these networks
is highly heritable (Peper et al., 2007) and shaped by a multitude
of genetic variants, some of them conferring risk for mental dis-
orders (Pezawas et al., 2005; Meyer-Lindenberg et al., 2009).
Thus, not surprisingly, the search for the limbic neural correlates
of risk variants in OXTR has gained increasing popularity in the
recent neuroscience literature. A particularly fruitful approach
has been imaging genetics, a research strategy that combines neu-
roimaging and genetic mapping techniques to identify the inter-
mediate neural mechanisms that translate genetic variation into
complex behavioral phenotypes (Meyer-Lindenberg and Wein-
berger, 2006).

Specifically, two of the SNPs, rs53576 and rs2254298, which
were introduced above, in the third intron of OXTR have been in
the focus of prior imaging genetics work. The first study on allelic
variation in rs53576 (Tost et al., 2010) was conducted in a large
sample of healthy Caucasian adults and demonstrated an associ-
ation between OXTR genotype and morphometric alterations of
the hypothalamus and amygdala. Specifically, consistent with a
prior report in ASD (Kurth et al., 2011), an allele-load-dependent

decrease in hypothalamus gray matter volume was observed in
rs53576 A allele carriers that predicted lower prosocial tempera-
ment specifically in males. Other allelic effects mapped to limbic
areas interconnected to the hypothalamus, as revealed by reduced
amygdala reactivity during emotional processing and increased
structural connectivity of hypothalamus and dorsal ACC.

In addition, several studies have examined limbic brain struc-
ture in the context of rs2254298, a genetic polymorphism that has
been repeatedly linked to ASD, although there has been hetero-
geneity regarding the risk-associated allele in populations of dif-
ferent ethnicity (Wu et al., 2005; Jacob et al., 2007; Liu et al.,
2010). The first imaging genetics study in a large sample of
healthy Japanese adults (Inoue et al., 2010) used manual tracing
methods to derive amygdala volumes, and examined the relation-
ship of these measures to seven SNPs and one haplotype block in
OXTR linked to ASD. Consistent with a second smaller study in
adolescents of mixed ethnicity (Furman et al., 2011), the authors
detected an association of the rs2254298 A allele and larger
amygdala volumes. These findings were not replicated in a sub-
sequent large study in healthy Caucasians using voxel-based mor-
phometry and automated amygdala segmentation methods (Tost
et al., 2011). Instead, a significant decrease in hypothalamus vol-
ume and altered function of dorsal anterior cingulate gyrus dur-
ing emotion processing was observed, a discrepancy in findings
that may relate to differences in imaging methods and/or popu-
lation stratification effects.

Other functional imaging genetics work in the field (O’Connell et
al.2012) examined the effects of OXTR rs2268498 (T/C), a func-
tional variant in the promoter region associated with negative
emotionality (Montag et al., 2011), on the neural processing of
emotional stimuli. Here (O’Connell et al., 2012), homozygotes of
the C allele demonstrated a decreased response in the inferior
occipital gyrus during the recognition of fearful facial expres-
sions, an area crucial for the processing of visual emotional stim-
uli that has been shown to be directly modulated by OT in a
previous pharmacological challenge study (Domes et al., 2010).
In addition, a recent pharmaco-imaging genetics study (Sauer et
al., 2012) demonstrated effects of a common variant in CD38
(rs3796863) that has been linked to lower plasma OT levels (Feld-
man et al., 2012) and risk for autism (Higashida et al., 2012) on
neural response of the fusiform gyrus during visual processing of
social stimuli. Here, a significant increase in brain activation was
observed in risk allele carriers that was further enhanced through
the intranasal application of OT.

Together, while some of the observed heterogeneities calls for
further empirical clarification, these imaging genetics findings un-
derscore that risk variants in OXTR and CD38 alter the structural
and functional properties of neural regions of the extended limbic
regulatory network, particularly in hypothalamus, amygdala,
higher-order regulatory areas of the anterior cingulate gyrus, and
relevant input areas of the circuitry involved in the visual process-
ing of social stimuli such as the fusiform gyrus. Further research is
needed to clarify existing conflicting associations at the neural
systems level, and how exactly these neural alterations translate
into behavior and predispose individuals to deficits in emotional
reactivity and social behavior.

Oxytocin and autistic social dysfunction
As overviewed above, considering together the sexually dimor-
phic feature and prosocial effects of this neuropeptide, it was
suggested that OT can contribute to the pathophysiology of ASD,
a sexually dimorphic neurodevelopmental disorder with social
deficits as a core feature, and that it could be a candidate thera-
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peutic agent for the symptoms of ASD (Yamasue et al., 2009). A
lower-than-normal plasma OT level in ASD subjects (Modahl et
al., 1998; Andari et al., 2010; Munesue et al., 2010) and an asso-
ciation of ASD with OXTR (Wu et al., 2005; Jacob et al., 2007;
Lerer et al., 2008; Liu et al., 2010) further support a link between
OT and ASD, although some inconsistency in association be-
tween ASD and OXTR was also recognized (Tansey et al., 2010;
Campbell et al., 2011). Furthermore, several pioneering studies
have suggested improvements in autistic behavioral and cogni-
tive characteristics following administration of OT. Hollander et
al. (2003, 2007) revealed the effects of intravenous injection of
OT on autistic behavioral indices in their work. The authors ex-
amined 15 medication-free adults with ASD without intellectual
disability who underwent two identical challenge days in which
they received a continuous infusion of synthetic OT (pitocin) or
placebo over 4 h in a randomized and double-blind design. The
observed severity of repetitive behavior decreased gradually and
significantly during OT infusion compared with that in individ-
uals receiving placebo infusions. They further examined the effect
of OT on affective speech comprehension using a similar study
design (Hollander et al., 2007) to their previous study assessing
repetitive behavior (Hollander et al., 2003). They observed that
all participants, regardless of whether they received OT or pla-
cebo, showed improvements in affective speech comprehension
from preinfusion to postinfusion. However, although those who

received placebo first tended to revert to baseline after a 1 week
infusion interval, those who received OT first retained the ability
to accurately assign emotional significance to speech intonation
in the speech comprehension task (Hollander et al., 2007). While
their pioneering work using intravenous infusion of OT provides
support for the use of OT in the treatment of ASD, more recent
studies have used intranasal administration of OT in subjects
with ASD (Andari et al., 2010; Guastella et al., 2010). Guastella et
al. (2010) reported that male youths with ASD who received in-
tranasal administration of OT showed significantly better perfor-
mance on the “Reading the Mind in the Eyes” task, a widely used
test of emotion recognition, compared with those receiving pla-
cebo. Another study examined the effect of intranasal OT on
autistic deficits in social interactions (Andari et al., 2010). This
study revealed that ASD individuals exhibited stronger interac-
tions with the most socially cooperative partner and that they
reported enhanced feelings of trust and preference with increased
gazing time into the eyes after OT administration together with
elevated plasma levels of OT. Although these findings, together
with recent case reports showing improvements in autistic symp-
toms (Munesue et al., 2010; Kosaka et al., 2012), suggest the
possibility that OT could be used to treat the currently untreat-
able autistic social dysfunction (Modi and Young, 2012), further
large-scale studies or long-term trials are needed to assess the
potential for further clinical application. In addition, the neural

Figure 1. An integrative and translational model using oxytocin to enhance prosocial behavior: from animal and human social behavior to ASD’s social dysfunction. Individual differences in
genetically determined factors related to oxytocin such as SNPs in oxytocin receptor genes (OXTR) and CD38 in humans and OXTR/CD38 knock-out mice (Takayanagi et al., 2005; Jin et al., 2007) shape
individual differences at the neural level such as function and structure in the limbic and paralimbic brain regions. Individual differences in these brain functions and structures should generate
behavioral characteristics ranging from normal to extremes, including various social behaviors such as pair bonding, parental care, mate guarding, selective partner preference, monogamy,
empathy, trust, ethnocentrism, social anxiety, social withdrawal, and ASD’s social dysfunctions. Although human and animal studies are in different streams, genetic factors related to oxytocin and
their neural and behavioral phenotypes are homologous at each level. It is expected that the therapeutic effects of exogenous oxytocin or its agonists can improve the behavioral and neural
phenotypes associated with oxytocin-related genetic factors. Furthermore, early or long-term administration of oxytocin might even have an effect at the genetic (e.g., epigenetic, such as
methylation of OXTR) level.
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mechanisms by which OT improves autistic behavior are also
unknown.

Conclusion
Our review covers the relationships of OT with animal/human
social behavior as well as with psychopathological conditions
such as autistic social dysfunction, and the neural underpinnings
for these relationships, which are mainly distributed in limbic
and paralimbic brain structures. The discussed neural systems-
level phenotypes not only link human genetic variation with be-
havior, but also human studies with animal studies, as the OT
system is evolutionarily highly conserved in the mammalian
brain and overlapping regions such as the amygdala, striatum,
hypothalamus, and medial frontal cortex were indicated as
shared neural effector sites in both humans and animals (Young
et al., 2001; Hammock and Young, 2006; Inoue et al., 2010; Tost
et al., 2010, 2011; Furman et al., 2011; Yamasue et al., 2011). As
reviewed above, several different levels of evidence from animal
models, genetic and human nonclinical and clinical studies sup-
port an association of OT with a wide range of social emotional
behaviors from animal affiliation and bonding to human social
perception, trust, and ethnocentrism. Accumulated evidence fur-
ther supports the involvement of OT in the pathophysiology of
disorders with pronounced social deficits including social anxiety
disorder, borderline personality disorder, schizophrenia, and
ASD. Clinical application of OT in the treatment of these disor-
ders could provide a long-awaited and effective treatment option
for afflicted individuals and their families. It is expected that OT
treatment cannot only correct the behavioral phenotype but also
the neural-level intermediate phenotype. Finally, it is even possi-
ble that OT may have favorable gene-level effects, such as epige-
netic modulation of OXTR (Gregory et al., 2009) (Fig. 1). In the
future, the cross-level integration of the steadily increasing body
of evidence derived from basic OT research will be crucial to
successfully translate these novel findings to clinical research and
treatment development. In doing so, the existing evidence on
OT’s potential adverse effects will deserve particular attention.
Specifically, it is imperative that future studies aim to unravel the
potential social side effects and “contraindications” of OT as a
treatment, as subject-specific biological and psychological char-
acteristics as well as contextual factors may critically determine its
efficiency.
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