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Amygdala Lesions Reduce Anxiety-like Behavior
in a Human Benzodiazepine-Sensitive
Approach–Avoidance Conflict Test
Christoph W. Korn, Johanna Vunder, Júlia Miró, Lluís Fuentemilla, Rene Hurlemann, and
Dominik R. Bach
ABSTRACT
BACKGROUND: Rodent approach–avoidance conflict tests are common preclinical models of human anxiety
disorder. Their translational validity mainly rests on the observation that anxiolytic drugs reduce rodent anxiety-like
behavior. Here, we capitalized on a recently developed approach–avoidance conflict computer game to investigate
the impact of benzodiazepines and of amygdala lesions on putative human anxiety-like behavior. In successive
epochs of this game, participants collect monetary tokens on a spatial grid while under threat of virtual predation.
METHODS: In a preregistered, randomized, double-blind, placebo-controlled trial, we tested the effect of a single
dose (1 mg) of lorazepam (n 5 59). We then compared 2 patients with bilateral amygdala lesions due to Urbach-
Wiethe syndrome with age- and gender-matched control participants (n 5 17). Based on a previous report, the
primary outcome measure was the effect of intra-epoch time (i.e., an adaptation to increasing potential loss) on
presence in the safe quadrant of the spatial grid. We hypothesized reduced loss adaptation in this measure under
lorazepam and in patients with amygdala lesions.
RESULTS: Lorazepam and amygdala lesions reduced loss adaptation in the primary outcome measure. We found
similar results in several secondary outcome measures. The relative reduction of anxiety-like behavior in patients with
amygdala lesions was qualitatively and quantitatively indistinguishable from an impact of anterior hippocampus
lesions found in a previous report.
CONCLUSIONS: Our results establish the translational validity of human approach–avoidance conflict tests in terms
of anxiolytic drug action. We identified the amygdala, in addition to the hippocampus, as a critical structure in human
anxiety-like behavior.
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Preclinical rodent models of anxiety disorders commonly
involve a conflict between approach and avoidance motivation
(1–3). This conflict can arise from the drive to explore versus
the adversity of unprotected exploration as exemplified in the
elevated plus maze (4,5), open field test (6), and light–dark box
(7). In other often-used paradigms, a tendency to approach
rewards (e.g., food or water) conflicts with avoidance of
negative consequences as in Geller-Seifter and Vogel operant
conflict tests involving electric shocks (8,9) and in novelty-
suppressed feeding tests (10). In all of these approach–
avoidance conflict (AAC) paradigms, acute administration of
benzodiazepines and other anxiolytics reliably reduces adap-
tation to threat; i.e., animals behave less cautiously (1–3). The
same substances also relieve clinical manifestations of anxiety
in humans (1–3); [see (11,12) for reviews of pharmacotherapy
in clinical anxiety]. This pharmacological evidence constitutes
the main argument for the translational validity of AAC
paradigms as models of human anxiety disorders. Still, the
cross-species validity of AAC is not firmly established given
& 2017 Society o

N: 0006-3223

SEE COMMENTA
that suitable preclinical test beds for humans have only
recently been developed in the form of computer games
(13–18). The neural implementation of human anxiety-like
behavior thus remains elusive.

A plethora of studies have addressed the neurobiological
implementation of rodent anxiety-like behaviors. They have
consistently shown that hippocampal theta oscillations are
increased during AAC (19) and that ventral hippocampus
lesions have effects similar to anxiolytics (20–22). However,
rodent amygdala lesions did not affect innate anxiety-like
behaviors and rendered behavior in AAC with overt rewards
more cautious rather than less cautious (23). This is in
contradistinction to a role of the amygdala not only in eliciting
acute fear responses but also in modulating anxiety-like
behavior to context (24–26).

Interestingly, the amygdala is rich in the molecular targets
of benzodiazepines (27), namely gamma-aminobutyric acid A
(GABAA) receptors (28,29). In rodents, local administration of
benzodiazepines into the amygdala has anxiolytic effects in
f Biological Psychiatry. This is an open access article under the
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operant conflict tests and the light–dark box (27). In humans,
the amygdala is critically required for storing threat memories
(30), and benzodiazepine administration reduced amygdala
activity in one human neuroimaging study (31) [see also (32)].
Thus, it appears plausible that benzodiazepines may reduce
anxiety-related behavior by inhibiting amygdala neurons in
addition to potential effects in the hippocampus. While some
functional neuroimaging studies on human AAC have reported
involvement of the hippocampus (15,16), others report activity
of the amygdala (13,14). Results from a lesion study suggest
causal involvement of the human hippocampus in AAC
behavior (15).

Here, we sought to investigate the impact of benzodiaze-
pines and of amygdala lesions on human AAC. In our
behavioral task (15) (Figure 1), participants forage for monetary
tokens in successive epochs under threat of a virtual predator
that can take away these tokens. Thus, this task explicitly pits
rewards (monetary tokens) against punishment (capture by
predator and thus loss of previously collected tokens).

Normatively, an agent should adapt behavior over time
within an epoch [cf. (17)]. As the number of collected tokens
increases over time, potential loss increases and participants
should become more cautious by staying close to the safe
place. Based on our previous report (15), we defined linear
intra-epoch adaptation of presence in the safe quadrant (i.e.,
the quarter of the field surrounding the safe place) as the
primary outcome measure. In other words, we hypothesized
linear drug 3 time and lesion 3 time interactions in this
measure, with a smaller effect of time under lorazepam and in
patients with lesions. As secondary outcomes, we investigated
six further behavioral metrics (15). In our previous investigation
(15), these metrics were intercorrelated—similar to measures
from rodent AAC (33,34). Therefore, we also introduced a
summary score that quantifies loss adaptation over intra-
epoch time as a weighted average of the rate of change per
time unit across all seven metrics.

We first inquired whether human anxiety-like behavior in
AAC is reduced by lorazepam as it is in rodents. Next, we
sought to quantify to what extent the amygdala contributes to
anxiety-like behavior by comparing 2 patients with relatively
specific lesions of the bilateral amygdala due to congenital
Urbach-Wiethe syndrome (35–38) with age- and gender-
matched healthy individuals and contrasting these results with
time according to three probabilities specified by the frame color. To avoid being
in the safe quadrant, which surrounds the safe place, constitutes the primary
diagonal to the initial predator position and the surrounding threat quadrant (pos
predator start in the same corner. In passive epochs, the human starts in the safe
the frame color turns red. All tokens from this epoch are lost when the player is
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a previously reported sample of patients with hippocampus
lesions due to sclerosis (15).

METHODS AND MATERIALS

Lorazepam Study: Participants, Study Medication,
Ethics, and Registration

Participants were recruited from the general population (overall
n 5 60, 30 per group, 15 female participants per group; one
female participant was excluded from analysis due to a suspected
medical condition). The age of the resulting sample (mean 6 SD)
was 25.1 6 4.4 years and did not differ between groups (p. .10).

The study medication was 1 mg of oral lorazepam (Temesta,
Pfizer, Zurich, Switzerland). Peak plasma concentrations are
reached after approximately 120 minutes (39,40). See also
Supplemental Methods.

The study was conducted in accord with the Declaration of
Helsinki and approved by the governmental research ethics
committee (Kantonale Ethikkomission Zurich, KEK-ZH-Nr. 2014-
0196) and the Swiss Agency for Therapeutic Products (Swiss-
medic, 2014DR1113). All participants gave written informed
consent. The study was preregistered at the Swiss Federal
Complementary Database (SNCTP000001227) and at the World
Health Organization International Clinical Trials Registry Platform
(ISRCTN12590498; http://www.isrctn.com/ISRCTN12590498).

Amygdala Study

Two female monozygotic twins (age 40 years) with selective
bilateral amygdala lesions due to Urbach-Wiethe syndrome
were tested at the University of Bonn (Germany). Seventeen
healthy female participants served as the control group (age
40.2 6 3.2 years) and were tested at the University of Zurich
(Switzerland). The study was conducted in accord with the
Declaration of Helsinki and approved by the respective
research ethics committees (Bonn: 037/11; Zurich: KEK-ZH-
Nr. 2013-0118). All participants gave written informed consent.

Neurological and psychological examinations of the 2
patients with lesions have been extensively reported (35–37,41).
High-resolution computer-assisted tomography images showed
that the calcified volumes include the entire basolateral amygdala
and most other amygdala nuclei [see Figures 1 and S3 in (35)].
The hippocampus itself is free of calcifications. There are mild
Figure 1. Behavioral approach–
avoidance paradigm. (A) The human
player (green triangle) is foraging for
tokens (yellow rhombi), which contri-
bute to financial reimbursement at the
end of the game. At any time, 10
tokens are present and are replaced
in random position when collected.
Collected tokens are shown in the
upper left corner, above the grid.
Meanwhile, a predator (gray circle) is
inactive in a corner of the grid and can
attack the human player at any given

caught by the predator, the player can seek shelter in a safe place. Presence
outcome measure. The safe place and thus the safe quadrant are always
itions are randomized across epochs). In active epochs, the player and the
place. (B) When the predator becomes active and starts to chase the player,
caught.

all tokens lost
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calcifications at the border region between the amygdala and
hippocampus (35).

The two patients did not meet criteria for any psychiatric
disorder and were not taking any psychotropic medication at the
time of testing. One of the twins suffered a first grand mal seizure
at age 12 years but stopped anticonvulsive therapy with a then
900-mg daily dose of valproate in 2006, when she became
pregnant (35); the other patient never had seizures. Both patients
reported pre-epileptic auras that occur up to twice a month.

An extensive neuropsychological test battery conducted at
age of 34 years, reported in (41), showed no signs of anxiety or
depression (21-Item Hamilton Depression Rating Scale, Ham-
ilton Anxiety Rating Scale, and Beck Depression Inventory II)
and no psychopathological symptoms (Symptom Checklist-
90–Revised). Both twins had average intelligence as well as
intact verbal learning and memory [as assessed by, among
others, the Verbaler Lern- und Merkfähigkeitstest, a German
version of the Rey Auditory Verbal Learning Test; see (41,42)].
Their executive functions were average (as measured with the
Trail Making Test, the Wisconsin Card Sorting Test, and a
Stroop test), but there were impairments in phonemic fluency
and short-term concentration. See Supplemental Methods for
information on the patients with hippocampus lesions.

Behavioral Approach–Avoidance Paradigm

Participants completed 240 epochs of our previously
described AAC task on a standard PC computer (15), divided
into five blocks with short self-paced breaks. In each epoch,
participants could move over a grid of 24 3 16 blocks to
collect monetary tokens under the threat of being attacked by
a predator, which resulted in the loss of all tokens collected in
the given epoch. One corner of the grid was a safe place in
which the predator could not attack. We refer to the quarter of
the grid in which the safe place was located as the safe
quadrant (constituting 12 3 8 grid blocks). The location of the
safe place was randomized in each epoch.

Tokens. At all times 10 tokens were present on the grid,
uniformly distributed in space, and every 2 seconds 1 of the
tokens changed its position randomly. When participants
collected a token, it was added to a row in the upper left
corner of the computer screen (above the grid) and a new
token appeared in a different place on the grid.

Predator. In the beginning of each epoch, a predator was
inactive in a corner of the grid (diagonal to the safe place). The
threat quadrant constituted the quarter of the grid in which the
inactive predator resided (12 3 8 blocks) and was always
diagonal to the safe quadrant. The predator could become active
and chase participants any time but could not enter the safe
place. The color of the frame around the grid (blue, purple, and
orange) indicated three distinct predator wake-up probabilities
(0.2, 0.5, and 0.8). These threat probabilities were not explicitly
revealed beforehand; participants learned to distinguish the differ-
ent threat levels during the game. Threat levels were balanced
across epochs.

Active Versus Passive Start. Participants started each
epoch either in the same corner as the predator (active start)
or from the safe place (passive start). The starting corner
was balanced across epochs. See also Supplemental
Methods.

Statistical Analyses of the Behavioral Paradigm

We analyzed participants’ positions on the grid over 1-second
bins. Because epoch duration was variable, more data were
available for earlier time bins than for later time bins. Presence
in the safe quadrant during the foraging phase constituted our
primary outcome measure. We also analyzed the following six
secondary outcome measures: 1) distance from the threat
(i.e., from the predator), 2) distance from the nearest wall, 3)
presence in the safe place, 4) presence in the threat quadrant,
5) token collection, and 6) speed when outside the safe place.
Our factorial design included a between-subjects factor (lor-
azepam/placebo or amygdala lesions/healthy control partic-
ipants) and three within-subjects factors: task (active/passive
start), threat level of predator (low/medium/high), and time
(15 time bins of 1-second duration). Secondary outcome mea-
sures were Bonferroni corrected to account for multiple
comparisons. For ease of presentation, and to facilitate
comparison of significance across primary, secondary, and
additional measures, we state p values multiplied by the
number of measures in the correction rather than adapting
significance thresholds. Resulting values exceeding 1 are
stated as 1.

We used the software package R to perform full multi-
stratum repeated-measures analysis of variance (ANOVA)
models with Greenhouse-Geisser corrected degrees of free-
dom and Bonferroni correction for six measures per experi-
ment for the secondary outcomes. Patients with selective
amygdala lesions are extremely rare, and often studies need
to rely on single cases (35,43,44). Our experimental design
necessitated a parametric three-factorial analysis for which
no single-case statistics are available, unlike for simpler
experimental designs (45). Crucially, using multilevel
repeated-measures ANOVA models considerably mitigates
the concern of limited sample size because all individual
responses enter the design matrix under the assumption of
equal variance across all cells of the design.

For each of the seven measures, we computed subject-by-
subject regression models for the linear effect of time (i.e., 15
time bins). We weighted the individual measures according to
their respective theoretical maximum range and summed them
to a loss adaptation score. To validate this score, we show
that it was significantly reduced in patients with hippocampal
sclerosis (n 5 7) compared with healthy control participants
from our previous data set (15) (n 5 12; t17 5 2.8; p 5 .0135,
two tailed). In the current data sets (lorazepam and amygdala
studies), we report one-tailed tests because we had a direc-
tional hypothesis.

RESULTS

Lorazepam Reduces Anxiety-like Behavior in a
Randomized, Double-Blind, Placebo-Controlled
Study

Lorazepam had a significant impact on our primary outcome.
As intra-epoch time passed, participants under placebo spent
Biological Psychiatry ], 2017; ]:]]]–]]] www.sobp.org/journal 3
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Table 1. Primary and Six Secondary Metrics of Loss Adaptation

Presence in Safe
Quadrant (Primary

Outcome)
Distance

From Threat
Distance From
Nearest Wall

Presence in
Safe Place

Presence in
Threat

Quadrant
Token

Collection

Speed When
Outside Safe

Place

Measure/Effect
F/t

Value
p

Value
F/t

Value
p

Value
F/t

Value
p

Value
F/t

Value
p

Value
F/t

Value
p

Value
F/t

Value
p

Value
F/t

Value
p

Value

Lorazepam Vs. Placebo Groups

Group 20.85 .3987 21.18 1 0.64 1 21.33 1 0.67 1 20.05 1 21.22 1

Group 3 threat overall 0.91 .3789 1.09 1 0.30 1 0.27 1 5.55 .0570 0.26 1 0.18 1

Group 3 threat linear 0.56 .5745 0.88 1 20.76 1 20.57 1 22.11 .2234 20.34 1 0.27 1

Group 3 task 20.19 .8511 20.52 1 2.24 .1722 22.20 .1926 20.07 1 2.29 .1530 20.45 1

Group 3 time overall 1.78 .1597 1.63 1 2.69 .3960 2.20 .7524 0.33 1 2.62 .3996 1.36 1

Group 3 time linear 24.34a ,.0001a 24.16a .0003a 5.25a ,.0001a 25.34a ,.0001a 0.09 1 5.34a ,.0001a 1.29 1

Group 3 threat 3 time overall 0.63 .7466 0.83 1 0.70 1 0.80 1 1.19 1 0.75 1 0.49 1

Amygdala Lesions Vs. Healthy Groups

Group 21.59 .1305 21.81 .525 0.83 1 21.57 .8022 1.77 .5652 0.26 1 20.72 1

Group 3 threat overall 0.31 .6901 1.80 1 0.49 1 0.18 1 3.89 .1812 0.47 1 0.54 1

Group 3 threat linear 0.58 .5660 0.35 1 0.46 1 20.60 1 20.82 1 20.15 1 0.78 1

Group 3 task 22.34a .0321a 22.87 .0642 0.39 1 20.99 1 3.30a .0252a 1.37 1 2.31 .204

Group 3 time overall 2.23 .1311 2.09 .9498 2.37 .6498 2.81 .6096 0.71 1 2.30 .6300 3.21 .1506

Group 3 time linear 24.48a .0001a 25.17a .0002a 4.14a .0013a 26.20a ,.0001a 1.91 .3783 4.72a .0002a 3.68a .0031a

Group 3 threat 3 time overall 1.55 .1474 1.43 1 1.20 1 0.31 1 1.86 .2664 1.09 1 1.17 1

Comparison of lorazepam-treated (n 5 29) and placebo-treated (n 5 30) participants and comparison of 2 patients with bilateral amygdala
lesions and matched healthy control participants (n 5 17). Results are shown from 2 (group: lorazepam/placebo or lesion/control) 3 3 (threat: low,
medium, or high) 3 2 (task: active or passive) 3 15 (time bins of 1 second each) analyses of variance. Overall condition effects are presented as
F values; polynomial contrasts and the overall effects of task and group are presented as signed t values. Results are Greenhouse-Geisser
corrected for violations of multisphericity, and secondary measures are Bonferroni corrected for six measures per experiment. (For ease of
comparison across primary and secondary measures, the table lists p values multiplied by the number of measures in the correction. Resulting
values exceeding 1 are stated as 1.) Linear contrasts are coded as higher dependent values for lorazepam than placebo or for patients than control
participants, for higher levels of threat, and for later time points. For more results on both studies, see Supplemental Figure S1. For more results of
the lorazepam study, see also Supplemental Tables S1 to S4. For more results of the amygdala study, see also Supplemental Figure S3 and
Supplemental Tables S5 and S6.

aCorrected significance level: p , .05.
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increasingly more time in the safe quadrant, and this linear
change over time was reduced in participants under loraze-
pam (t 5 24.3, p , .0001) (Table 1 and Figure 2). In secondary
measures, we found a similar linear drug 3 time interaction in
four measures after Bonferroni correction; participants under
lorazepam kept less distance from the threat (t 5 24.2, p 5

.0003) and from the nearest wall (t 5 5.3, p , .0001), had less
presence in the safe place (t 5 25.3, p , .0001), and collected
more tokens (t 5 5.3, p , .0001) as the epoch progressed
compared with those under placebo (Table 1 and Figure 3).
This pattern of results was mirrored by a significantly smaller
loss adaptation score in the lorazepam group (t57 5 2.3, p 5

.0134) (Figure 4).
To address whether the less cautious strategy induced

by lorazepam is maladaptive in our ACC task, we
compared the average number of tokens retained at the
end of each epoch, including the chase phase. No signifi-
cant overall group difference emerged (p . .10)
(Supplemental Table S1). This implies that both groups
maximize token collection in the game, but by using differ-
ent strategies.

There was no group difference in explicit ratings of predator
probability or preference for the three predators (all ps . .10)
(Supplemental Table S1), and including these measures as
4 Biological Psychiatry ], 2017; ]:]]]–]]] www.sobp.org/journal
covariates (together with their time interaction) led to the same
pattern of results for the individual metrics (Supplemental
Table S2) and the loss adaptation score (Supplemental Table
S1). Within the placebo group, participants’ behavior was
influenced by threat level and was generally similar to the
behavior of healthy participants in our previous report
(15) (Supplemental Figures S1 and S2 and Supplemental
Table S3).
Sedation Does Not Explain the Effects of Lorazepam
on Anxiety-like Behavior

Saccadic peak velocity, a sensitive measure of benzo-
diazepine-induced drowsiness (40,46–50), did not differ
between groups immediately before and after the game
(p . .10) (see Supplemental Methods and Supplemental
Table S4). Including saccadic peak velocity (measured pre-
or posttask) as a covariate (together with its time interaction)
did not change the results of the group comparison for
any of our outcome measures (Supplemental Tables
S2 and S4). Furthermore, reaction times in the game
(i.e., escape latencies [when the predator woke up])
did not differ between the groups (p . .10) (Supplemental
Table S1).

www.sobp.org/journal
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Figure 2. Primary metric of loss adaptation in the approach–avoidance paradigm. The proportion of time spent in the safe quadrant (see Figure 1) shows
group differences for lorazepam-treated vs. placebo-treated healthy participants as well as for amygdala and hippocampus lesion patients vs. respectively
matched control participants (see Table 1 for statistical results, Figure 3 for results on the six secondary outcome measures, and Figure 4 for results on the
loss adaptation score that combines the seven measures). As intra-epoch time progresses, the control groups spent more time in the safe quadrant than the
drug and lesion groups (in both active and passive epochs; i.e., the black lines are above the dark red lines for all three experiments). The inset in the left
column depicts group differences. As per task design, the initial phase of the epoch is characterized by substantial differences between active epochs (in
which the player and the predator start in the same corner) and passive epochs (in which the participant starts in the safe place).
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Two Patients With Congenital Amygdala Lesions
Show Reduced Anxiety-like Behavior Relative to
Healthy Controls

Patients with amygdala lesions, compared with the control
group, spent less time in the safe quadrant as intra-epoch
time progressed (t 5 24.5, p 5 .0001) (Table 1 and Figure 2).
A similar pattern was found in five of the six secondary
measures after Bonferroni correction (Table 1 and Figure 3);
compared with control participants, patients with lesions kept
relatively less distance from the threat (t 5 25.2, p 5 .0002)
and more distance from the nearest wall (t = 4.1, p = .0013);
they were less often in the safe place (t 5 26.2, p , .0001),
collected more tokens (t 5 4.7, p 5 .0002), and had
higher speed when outside the safe place (t 5 3.7,
p 5 .0031) as the epoch progressed. Again, this was reflected
in a smaller loss adaptation score (t17 5 1.7, p 5 .0539)
(Figure 4).

The overall number of tokens retained at the end of all epochs
did not differ between groups (p . .10) (Supplemental Table S5).
There was no evidence for general motor slowing in the lesion
group given that escape latencies were comparable between
groups (p . .10) (Supplemental Table S5).

The two groups showed trendwise group 3 threat inter-
actions in two measures of explicit threat knowledge, such
that the patients with amygdala lesions estimated the wake-up
of the predator with the highest threat level as particularly
probable (t 5 1.8, p 5 .0763) and early (t 5 21.8, p 5 .0892)
(Supplemental Table S5). However, no overall group difference
emerged (all ps . .10), and a covariance analysis revealed that
the difference in loss adaptation score was in a similar range
when accounting for these subjective reports (Supplemental
Table S5). Overall behavior of the control group was
comparable to our previous results in healthy participants
(15) (Supplemental Figures S1 and S2 and Supplemental
Table S6).
Amygdala and Hippocampus Lesions Had
Comparable Behavioral Effects

Finally, we quantitatively compared the effects due to lesions
to the amygdala, as demonstrated in the current report, and to
hippocampus lesions, as shown in our previous report (15). Of
note, lesions were selective to the amygdala or the hippo-
campus (for detailed descriptions, see Methods and Materials).
The calcifications in the two Urbach-Wiethe patients did not
extend to the hippocampus itself, and the patients previously
scored normal on memory tests (including a German version of
the Rey Auditory Verbal Learning Test). Conversely, amygdala
tissue was spared in the patients with hippocampus lesions.

We used a 2 (lesion/control) 3 2 (study group: amygdala/
hippocampus) ANOVA (see also Figure 4). In this analysis,
dissociation between the effect of hippocampus and amyg-
dala lesions would be revealed as a lesion 3 study group 3

time interaction, and an overall impact of lesions would be
revealed as a lesion 3 time interaction. We found a lesion 3

time interaction for the primary measure, presence in the safe
quadrant (t 5 29.6, p , .0001), and for five out of six
secondary measures (distance from threat: t 5 210.0, p ,

.0001; distance from nearest wall: t 5 29.0, p , .0001;
presence in safe place: t 5 26.5, p , .0001; presence in
threat quadrant: t 5 5.0, p , .0001; token collection: t 5 8.5,
p , .0001) (Figures 2 and 3). A significant lesion 3 study group
3 time interaction was found for one of the metrics (presence
in safe place: t 5 23.7, p 5 .0017). However, post hoc
comparisons showed that in this measure the two control
groups differed more than the lesion groups, and the descrip-
tive pattern suggests that floor effects contributed to this
interaction (Figure 3; see also Supplemental Figure S2).
Relatedly, a main effect of lesion emerged on the loss
adaptation score (F1,34 5 8.1, p 5 .0074), but there was no
significant lesion 3 study group interaction and no main effect
of study group (both ps . .10).
Biological Psychiatry ], 2017; ]:]]]–]]] www.sobp.org/journal 5
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Figure 3. Six secondary metrics of loss adaptation in the approach–avoidance paradigm. Individual metrics show group differences for lorazepam-treated vs.
placebo-treated healthy participants as well as for amygdala and hippocampus lesion patients vs. respectively matched controls (see Table 1 for statistical results,
Figure 2 for results on the primary outcome measures, and Figure 4 for results on the loss adaptation score that combines the seven measures). In the lorazepam
experiment, significant linear interactions of drug 3 time emerged in four measures (after Bonferroni correction); toward the end of the epoch, participants under
lorazepam (compared with those under placebo) were closer to the threatening predator (A), were farther from the nearest wall (B), spent less time in the safe place (C),
and collected more tokens (E). Testing patients with amygdala lesions revealed a significant group 3 time interaction in five measures (after Bonferroni correction); as
the epoch progressed, patients with amygdala lesions (compared with controls) were relatively closer to the threatening predator (A) and relatively farther from the
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Figure 4. Loss adaptation scores in
the approach–avoidance paradigm.
Loss adaptation in the game is
reduced under lorazepam vs. placebo
and in two patients with amygdala
lesions vs. healthy control partici-
pants. This mirrors reductions of loss
adaptation in patients with hippocam-
pus lesions [reanalyzed from (15)].
The loss adaptation score combines
the seven behavioral metrics of the
approach–avoidance conflict para-
digm (see Figures 2 and 3 and
Supplemental Figures S1 and S2).
The overall differences in loss adapta-
tion scores among the three groups

are likely due to age differences (mean 6 SD of the three samples in years: lorazepam study: 25.1 6 4.4; amygdala lesions study: 40.2 6 3.0; hippocampus
lesions study: 44.0 6 9.3). As a side finding, we observed that loss adaptation score correlated negatively with age across the three control groups (Pearson’s
r 5 2.41, p 5 .0013). Error bars depict standard errors of the mean.
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DISCUSSION

Anxiolytics influence both rodent AAC behavior and human clinical
anxiety, and this is often taken to suggest that AAC is a valid
preclinical anxiety model (51). Here, we demonstrated that the
benzodiazepine lorazepam reduces anxiety-like behavior in human
AAC. We then investigated 2 patients with selective bilateral
amygdala lesions due to congenital Urbach-Wiethe disease and
showed that these patients exhibited reduced anxiety-like behav-
ior. Interestingly, the behavior of these 2 patients with amygdala
lesions does not differ from a previously investigated group of
individuals with hippocampal sclerosis.

Detailed control analyses make it unlikely that drug side effects
are responsible for the impact of lorazepam. Reaction times, both
in the beginning of an epoch and when the virtual predator
became active, did not differ between groups. Furthermore, we
did not observe group differences in saccadic eye movements, a
sensitive marker of benzodiazepine-induced sedation, both imme-
diately before and after the AAC test. Overall, our results suggest
that behavioral effects of benzodiazepines in human AAC are
homologous to those in classic rodent AAC. This provides a
neuropharmacological validation of our virtual AAC paradigm and
thus distinguishes it from more common human anxiety tests
such as public speaking anticipation, which is not sensitive to
anxiolytic drugs and instead responds to acute administration of
serotonergic substances (52).

Benzodiazepines bind allosterically to GABAA receptors and
thereby increase the inhibitory action of GABA (28). Among other
regions, GABAA receptors are prominently expressed in the
amygdala in both rodents (27,53) and humans (54), which points
to a possible role of the amygdala in anxiety-related behaviors. In
addition, electrophysiological recordings in rodents during an AAC
test have recently indicated a role of the amygdala (26) in addition
to previous demonstrations of hippocampal involvement (55).
Functional neuroimaging studies in humans suggest that the
amygdala may mediate the anxiolytic effect of lorazepam in an
emotional face assessment task (31). By demonstrating a critical
role of amygdala lesions in human AAC, our findings offer a
missing link between assessments of human and rodent anxiety.
nearest wall (B), they spent less time in the safe place (C), collected more tokens (E
quadrant (D), no significant linear interactions of group and time were observed in the
the 2 patients separately. Mean data are plotted for time points in which data from all p
later time points because many participants tend to reside in the safe place toward
Strikingly, we observed similar effects as in the lorazepam group:
as intra-epoch time passed, patients with lesions spent less time
in the safe quadrant and safe place, collected more tokens, and
were faster outside the safe place compared with a control group.

These findings in the group with amygdala lesions qualitatively,
and indeed quantitatively, mirror the reduction in loss adaptation
that we have previously reported for a group with hippocampus
lesions (15) (see Figures 2 and 3). This raises the pertinent
question of whether amygdala and hippocampus lesions affect
the same or complementary components. Potentially, the two
structures could mediate approach versus avoidance behaviors in
a differential manner that is not immediately obvious in our task.
Our measures of anxiety-like behavior can result from decreased
approach and/or increased avoidance and may distinctly relate to
influences of the hippocampus and the amygdala, respectively.
Paradigms with better segregation of individual actions are
required to answer this question (17).

Our results relate to two recent studies of nonhuman primates
making cost–benefit decisions between unpleasant stimuli and
liquid rewards (56,57). In one of these two studies, benzodiazepine
administration increased approach decisions during AAC (56). In
addition, benzodiazepine partly reversed the effects of electric
stimulation to the pregenual cingulate cortex, which shifted the
baseline approach–avoidance balance toward avoidance (56). In
another monkey study, disrupting the amygdala-hippocampus
circuit abolished an approach–avoidance imbalance that was
induced by inactivating the anterior orbitofrontal cortex (57). In
human anxiety-like behavior, the interplay of cingulate and
orbitofrontal cortex with amygdala-hippocampus circuits remains
to be investigated.

The bed nucleus of the stria terminalis (BNST) represents an
additional candidate region that can be expected to influence
anxiety-like behavior because it is interconnected with the
amygdala as well as the hippocampus (58,59). An abundance
of rodent studies (32,60) and a burgeoning literature in humans
has implicated the BNST (58,61,62) in sustained responses to
uncertain threats. For example, the BNST was related to fear-
potentiated startle responses (32,61), where electric shocks
), and were faster when outside the safe place (F). For presence in the threat
lorazepam or amygdala study. See Supplemental Figure S3 for graphs depicting
articipants are available (e.g., speed outside the safe place is not shown for some
the end of the epoch).
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are either cued or unpredictable, or to direct exposure to
phobia-eliciting stimuli such as spiders (63,64). Although there
is no evidence of BNST lesions in our sample, the amygdala
provides important BNST inputs that are likely to be damaged
in our patients with lesions.

Hippocampal sclerosis and Urbach-Wiethe disease, the
two lesion models investigated in this study and our previous
report (15), gradually encroach during brain development. It is
possible that other brain structures can over time compensate
for some loss of function due to such deteriorating hippo-
campus or amygdala deficiencies. Thus, these lesion models
are not directly comparable to acute brain lesions in nonhu-
man animals, and we cannot disentangle whether acute or
developmental effects underlie the observed impact of lesions
on anxiety behavior. Testing patients with acute lesions could
mitigate such concerns. In addition, we cannot dissect the
precise subregions of the amygdala or the hippocampus
responsible for the observed effects, and we cannot entirely
rule out an impact of damage to traversing or nearby fiber
tracts.

Interestingly, some drugs that affect the GABAergic system,
such as valproic acid, appear to be anxiolytic in rodent AAC
but have not been validated in clinical conditions (65–67). The
reason for this discrepancy is as yet unclear. With our AAC
paradigm, we furnish a platform for preclinical drug testing in
humans, thereby elucidating possible species differences in
anxiolytic drug action.

In conclusion, we investigated the impact of benzodiaze-
pines and amygdala lesions on behavior in a human analogue
of animal AAC paradigms, which are extensively used in the
preclinical evaluation of anxiolytics (1–3). We demonstrated
that loss adaptation in our paradigm, a critical measure of
anxiety-like behavior, is reduced both by benzodiazepines and
by amygdala lesions. Furthermore, there is no qualitative
difference, and indeed no appreciable quantitative difference,
between the effects of amygdala lesions and hippocampus
lesions on anxiety-like behavior. This provides a crucial link
between investigations on animal models of anxiety, which
have often focused on the rodent hippocampus (20,21), and
research on human anxiety, which tends to stress the role of
the amygdala (30,68–71). In a wider context, our approach of
using behavioral measures in a well-defined paradigm is in line
with a recent proposal that emphasizes the need to dissociate
behavioral symptoms and subjective experience of anxiety in
basic research (72,73) and in clinical conditions (51). By
suggesting a missing link between human and animal work
on anxiety, we hope to have advanced the understanding of
the neural mechanisms supporting anxiety-like behavior.
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