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Post-traumatic stress disorder (PTSD) is characterized by hypervigilance, increased reactivity to unpredictable versus predict-
able threat signals, deficits in fear extinction, and an inability to discriminate between threat and safety. First-line pharmaco-
therapies for psychiatric disorders have limited therapeutic efficacy in PTSD. However, recent studies have advanced our
understanding of the roles of several limbic neuropeptides in the regulation of defensive behaviors and in the neural proc-
esses that are disrupted in PTSD. For example, preclinical studies have shown that blockers of tachykinin pathways, such as
the Tac2 pathway, attenuate fear memory consolidation in mice and thus might have unique potential as early post-trauma
interventions to prevent PTSD development. Targeting this pathway might also be beneficial in regulating other symptoms of
PTSD, including trauma-induced aggressive behavior. In addition, preclinical and clinical studies have shown the important
role of angiotensin receptors in fear extinction and the promise of using angiotensin II receptor blockade to reduce PTSD
symptom severity. Additional preclinical studies have demonstrated that the oxytocin receptors foster accurate fear discrimi-
nation by facilitating fear responses to predictable versus unpredictable threats. Complementary human imaging studies dem-
onstrate unique neural targets of intranasal oxytocin and compare its efficacy with well-established anxiolytic treatments.
Finally, promising data from human subjects have demonstrated that a selective vasopressin 1A receptor antagonist reduces
anxiety induced by unpredictable threats. This review highlights these novel promising targets for the treatment of unique
core elements of PTSD pathophysiology.

Key words: anxiety; angiotensin II; oxytocin; PTSD; tachykinin; vasopressin

Introduction

Received June 30, 2020; revised Nov. 6, 2020; accepted Nov. 11, 2020. Animals respond to impending threats or signals predicting

This work was supported by National Institutes of Health Grants TR0THL137103-01A1 and 3R0THL137103-
0251 to P.J.M., National Institutes of Health Grants ROTMH113007 and ROTMH113007-0451 to J.D., Veterans
Administration Advanced Research Fellowship to T.R.L., Intramural Research Program, National Institute of
Mental Health Grant ZIAMH002798 to T.R.L. (principal investigator Christian Grillon), National Institutes of
Health Grant ROOMH108734 to M.Z., Sloan Research Fellowship to M.Z., and Klingenstein-Simons Fellowship
to M.Z. RA. was supported by National Alliance for Research on Schizophrenia and Depression Young
Investigator Grant 22434, Ramén y Cajal program RYC2014-15784, RETOS-MINECO SAF2016-76565-R FEDER
funds, and ERANET-Neuron JTC 2019 ISCIIl AC19/00077. Azevan Pharmaceuticals Inc. provided SRX246 and
placebo without charge and funded analysis of plasma samples for drug content.

J.D. reports submission of a provisional patent application entitled: Method and System for Testing for
Stress-related Mental Disorders, Susceptibility, Disease Progression, Disease Modulation and Treatment
Efficacy (#62/673447). R.A. declares potential conflict of interest with the patent PCT/US2015/037629 about
Tac2 antagonists for treating psychiatric disorders. The remaining authors declare no competing financial
interests.

Correspondence should be addressed to Joanna Dabrowska at joanna.dabrowska@rosalindfranklin.edu.

https://doi.org/10.1523/JNEUR0SCI.1647-20.2020
Copyright © 2021 the authors

threats through a combination of behavioral and physiological
responses related to fear and anxiety. Fear is an adaptive defen-
sive behavior and is necessary for survival (Paré et al., 2004;
Gross and Canteras, 2012; Fanselow, 2018). However, maladap-
tive processing of fear memories can contribute to stress-related
psychiatric disorders, such as post-traumatic stress disorder
(PTSD). PTSD is characterized by hypervigilance, inability to
properly discriminate between threat and safety, disproportion-
ately higher fear reactivity to unpredictable versus predictable
threats, and an inability to extinguish learned fear (Craske et al.,
2008; Grillon et al., 2009; Jovanovic et al., 2010). First-line phar-
macotherapies for psychiatric disorders have limited therapeutic
efficacy in PTSD, and the need for new pharmacotherapies
remains largely unmet, as clinical trials of many potential
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Figure 1.

Anxiety-Potentiated Startle

Limbic neuropeptides and their receptors are promising targets for PTSD prevention and treatment. Translational potential of the limbic neuropeptides is illustrated by gray arrows

from preclinical studies using animals models of fear and anxiety (A), to neuroimaging studies on the effects of the neuropeptides (e.g., oxytocin) on the amygdala activity in humans (B), to
behavioral studies (anxiety-potentiated startle) testing the effects of compounds targeting neuropeptidergic receptors (e.g., vasopressin receptor antagonist) on anxiety measured in humans
(€). A, Neuropeptidergic GPCRs in the extended amygdala modulate unique phases of fear leaming and thereby can moderate core features of PTSD pathophysiology. OTRs in rat BNST facilitate
fear discrimination by strengthening fear responses to predictable, signaled threats. Nk3R-expressing cells in the BNST mediate trauma-induced aggression in mice, whereas in mouse CeM, the
NK3R antagonist osanetant prevents fear memory consolidation. In the Cel and CeM, ATR antagonist accelerates fear memory extinction in mice. LH, Lateral hypothalamus; PAG, periaqueduc-
tal gray; RF, reticular formation. Solid lines indicate inhibitory (GABAergic) projections. Dashed arrows indicate excitatory (glutamatergic) projections. B, Using 7T fMRI in healthy human sub-
jects, it was shown that, compared with placebo (PLC), oxytocin (0T, 24 1U) dampened the left centromedial amygdala response to fearful relative to neutral faces in a manner similar to
lorazepam (LZP, 1 mg) (red-yellow cluster represents OT vs PLC; blue-green cluster represents LZP vs PLC). €, A novel V1aR antagonist, SRX246, decreases startle amplitude during presentation
of an unpredictable threat (mild electrical shock) in a translational paradigm of anxiety in humans. Traces represent processed EMG recordings of eye blink startle after administration of a loud
white noise. In the safe condition, participants are not at risk of shock. In the unpredictable threat condition, participants can receive a mild electric shock (red lightning bolt) at any time.
Anxiety-potentiated startle is quantified as the change in startle amplitude from safe to threat.

agents, including initially promising corticotropin-releasing
factor antagonists, have delivered inconclusive results (Spierling
and Zorrilla, 2017). In this review article, we first introduce the
brain regions, particularly the extended amygdala, that are critical
for the modulation of defensive behaviors and learned fear and
describe the basic neurobiology of neuropeptides. We then discuss
how basic research on the role of limbic neuropeptides in the reg-
ulation of fear and anxiety in animal models is being directly
translated into potential treatments for PTSD in humans. The
content of the review has an important translational validity with
regard to psychiatric disorders in humans because we present data
on the effects of the same neuropeptides using clinically relevant
measures (e.g., fear-potentiated startle [FPS] and fear condition-
ing) in both animal and human studies. We also address sex-spe-
cific effects in both rodents and humans and the importance of
sex-specific pharmacotherapies for PTSD.

The neurocircuitry of fear and anxiety

The extended amygdala is composed of the central amygdala
(CeA) and the bed nucleus of the stria terminalis (BNST) (Sun
and Cassell, 1993; Alheid, 2003). Neurons of the extended amyg-
dala are primarily GABAergic and they also produce a vast diver-
sity of neuropeptides, thus forming multiplex neural populations
with a wide range of functions (for review, see Beyeler and

Dabrowska, 2020). Both the CeA and the BNST receive afferent
glutamatergic information from the BLA among many other
regions (Jennings et al, 2013; Torrisi et al, 2018) (Fig. 1A).
During fear conditioning (fear memory acquisition), a sensory cue
(conditioned stimulus [CS™]) coterminates with an aversive soma-
tosensory stimulus (unconditioned stimulus [US]), usually a foot
shock. When tested for fear recall, animals display fear-like behav-
iors when presented with the CS™ alone and/or in the condition-
ing context. In the neurocircuitry of fear conditioning, the lateral
amygdala (LA) is the main point of entry of sensory inputs (about
CS, US, and context) from the thalamus; LA conveys this sensory
information to the lateral nucleus of the CeA (CeL) (but see Paré
et al., 2004). The CeL projects to the medial CeA (CeM), which is
the major output structure of the amygdala (Duvarci and Paré,
2014). Neuronal activity of the LA and CeL is required for fear
memory acquisition, whereas activity in the CeM is required for
the expression of conditioned fear responses (Pascoe and Kapp,
1985; Fanselow and LeDoux, 1999; Phelps and LeDoux, 2005;
Wilensky et al., 2006; Ciocchi et al., 2010).

The BNST also receives direct projections from the CeA and
the BLA (Roberts et al., 1982; McDonald et al., 1999). Both the
CeM and the BNST project to many overlapping brainstem
effector structures, including the periaqueductal gray (which
mediates freezing behavior), reticular formation (which
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produces startle response), lateral hypothalamus (which regu-
lates cardiovascular and respiratory tone), and paraventricular
nucleus (PVN) (which secretes various hormones) (Gungor
and Paré, 2016; Shackman and Fox, 2016). The CeA and
BNST also heavily innervate each other and can modulate
each other’s activity (Gungor et al,, 2015; Pomrenze et al,,
2018; Yamauchi et al., 2018) (Fig. 14).

According to the classic theory formulated by Michael Davis
and colleagues (Walker and Davis, 2008; Davis et al., 2010), after
a threat stimulus, the CeA is required for fear memory of a short,
discrete stimulus (phasic or cued fear), whereas the BNST is nec-
essary for long-duration fear responses (sustained or contextual
fear) that resemble anxiety-like behavior. Recently, it has become
apparent that the BNST also mediates fear responses to unpre-
dictable, diffuse, or unsignaled threats (Gungor and Paré, 2016;
Goode and Maren, 2017; Goode et al., 2019), but it might also in-
hibit cued fear responses (Meloni et al., 2006; Moaddab and
Dabrowska, 2017). Similarly, although the CeA primarily pro-
motes cued fear, it also modulates anxiety-like behavior (Asok et
al., 2018; Pomrenze et al., 2018).

Neuropeptidergic modulators versus classic
neurotransmitters

Although neuropeptides were once viewed as having mild neuro-
modulatory effects, we now know they control a variety of
behaviors. In contrast to classic neurotransmitters that are syn-
thesized at the nerve terminal, neuropeptides are synthesized at
the cell body and then transported to release sites. They can be
released not only from the axonal terminal (axonal release), but
also from boutons along the axons, as well as from the soma and
dendrites (somatodendritic release). At the release sites, neuro-
peptides are stored in large dense core vesicles, as opposed to
small vesicles, such as those storing classic neurotransmitters
(van den Pol, 2012). However, there are some exceptions, as in
case of angiotensin II: a network of different brain cells (rather
than one cellular phenotype) may contribute to the synthesis and
storage of this peptide (for review, see de Kloet et al.,, 2015).
Because large dense core vesicles are stored further back in the
terminal than synaptic vesicles, they typically require a prolonged
stimulus and a large influx of calcium to be released. Hence, a
rapid train of action potentials, rather than a single action poten-
tial, is needed to trigger the release of neuropeptides (Bondy et
al., 1987). In some cases, however, neuropeptides can be secreted
via activity-independent mechanisms, for example, in hypothala-
mic magnocellular neurons (which produce oxytocin and/or va-
sopressin), some neurosecretory responses are directly coupled
to voltage but independent of internal or external calcium con-
centrations (for review, see Tasker et al., 2020).

In contrast to classic neurotransmitters, neuropeptides do not
possess a reuptake system and are not taken back up into the pre-
synaptic neuron or metabolized in the synapse. As a result, they
can diffuse and act at a distance from the release site on a longer
time scale than synaptic signaling, in a process called volume
transmission (Fuxe et al, 2005). Eventually, neuropeptides are
lysed by catabolic peptidases (van den Pol, 2012). Neuropeptide
effects are linked to G-protein coupled receptors (GPCRs); there-
fore, they require more time to have a biological effect, compared
with some neurotransmitters acting directly on ion channels and
causing an immediate change in neuronal activity. Moreover, the
diversity of signaling pathways associated with GPCRs’ transmis-
sion gives neuropeptides a much broader and more diverse spec-
trum of biological effects and functions (Hazell et al., 2012). This
diversity of signaling pathways also provides vast opportunities
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for developing new pharmacological targets and treatment
strategies.

The role of tachykinins in the consolidation of fear memory
and their therapeutic potential for preventing PTSD
development

The tachykinins are a group of peptides sharing a carboxy-termi-
nal sequence; they serve as neuromodulators and neurotrans-
mitters in the mammal brain (Beaujouan et al, 2004). The
Tachykinin 1 (Tacl) gene encodes a pro-protein that, on post-
translational cleavage, produces two peptides: substance P (SP)
and neurokinin A. The tachykinin 2 (Tac2) gene encodes neuro-
kinin B (NkB) (Floor et al., 1982). SP binds preferentially to the
neurokinin 1 receptor (Nk1R), whereas neurokinin A binds pref-
erentially to the neurokinin 2 receptor and NkB preferentially
binds at the neurokinin 3 receptor (Nk3R) (Khawaja and Rogers,
1996). SP and NKkIR appear to regulate emotional stress
responses, and SP in the CSF correlates with PTSD severity (for
review, see Dunlop et al., 2012). In addition, the Nk3R receptor
regulates fear memory in healthy mice and a PTSD-like model
(Dias et al., 2014). Drugs targeting the tachykinin receptors are
generally safe and well tolerated in humans (Malherbe et al,
2011; Yuan et al., 2016), raising hopes that they could be used to
treat PTSD. To date, however, investigational drugs targeting
tachykinin receptors (e.g., the Nk1R antagonist GR205171) have
failed to show clinical efficacy in PTSD (Mathew et al., 2011).
But unlike NkIR, which is expressed in multiple areas of the
human brain (Beaujouan et al., 2004), Nk3R expression is mainly
restricted to the amygdala in mice, rats, rhesus monkeys, and
humans (Mileusnic et al., 1999; Duarte et al., 2006; Nagano et al.,
2006). Thus, pharmacological targeting of the Nk3R may be a
more effective candidate for PTSD treatment. This hypothesis is
supported by the discovery that the Tac2 pathway (Tac2, NkB,
and Nk3R) plays an important role in fear processing.

A full gene expression analysis of the amygdala after audi-
tory fear conditioning uncovered molecular pathways involved
in memory consolidation processes. The top gene candidate
identified was Tac2, which was upregulated 30 min after fear
acquisition, while its protein product, NkB, was upregulated at
2 h. Additional experiments revealed that Tac2 is necessary and
sufficient for fear memory consolidation in male mice (Andero
et al., 2014). Systemic or intra-CeA blockade of the Tac2 path-
way via administration of an Nk3R antagonist reduced fear
expression, suggesting it impaired fear memory consolidation.
Concordantly, Designer Receptors Exclusively Activated by
Designer Drugs (DREADDs)-mediated inhibition of Tac2-
expressing neurons in the CeA after fear acquisition resulted in
diminished fear memory consolidation. In a follow-up study,
optogenetic stimulation of channelrhodopsin-expressing CeA-
Tac2 neurons during fear acquisition resulted in impaired
memory consolidation (Andero et al., 2016). These data high-
light the potential of compounds targeting the Tac2 pathway
for preventing and/or treating fear-related neuropsychiatric
disorders (Fig. 1A). In particular, Nk3R antagonists, such as
osanetant, show potential as an early post-trauma intervention
against PTSD development because they impair fear memory
consolidation in the amygdala.

Future studies on the Tac2 pathway and fear memory should
consider the effects of this pathway on sex hormones. Indeed,
the oral Nk3R antagonist ESN364 has recently been shown to
decrease gonadal hormone levels (testosterone and estradiol/pro-
gesterone, respectively) in healthy men and women (Fraser et al.,
2016). This is not surprising, given numerous previous reports
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that the Tac2 pathway modulates sex hormones in both male
(Danzer et al., 1999) and female rodents (Sahu and Kalra, 1992).
Notably, a new study shows that, whereas osanetant impairs fear
memory in male mice, it enhances the memory in females
(Florido et al., 2020).

The role of Tac2 in trauma-induced aggression

As described above, Tac2 signaling in the CeA has been shown
to play a key role in fear memory consolidation (Andero et al.,
2014, 2016). In addition, recent work has implicated Tac2 in
encoding the brain state produced by social isolation stress.
More specifically, Zelikowsky et al. (2018b) found that prolonged
social isolation stress is sufficient to upregulate Tac2 expression
across a number of brain regions, and that this upregulation is
conserved across species, occurring in mice and fruit flies alike
(Zelikowsky et al., 2018a). Furthermore, region-specific loss-of-
function perturbations of Tac2™ cells, NK3Rs, and Tac2 signal-
ing (using chemogenetics, local Nk3R antagonism, and shRNAi
approaches) revealed dissociable roles for the anterior dorsal
BNST, dorsomedial hypothalamus, and the CeA in the control of
isolation-induced persistent fear, enhanced aggression, and acute
fear, respectively. Collectively, these data suggest that Tac2 acts
in parallel across multiple brain regions to mediate the effects of
social isolation stress on a variety of behaviors.

Of particular interest is the role of tachykinins in isolation-
induced aggression. In addition to the findings that Tac2 signal-
ing in the Dorsomedial hypothalamus (DMH) DMH is required
for such aggression, Zelikowsky et al. (2018b) demonstrated that
virally mediated, brainwide overexpression of Tac2 combined
with chemogenetic activation of Tac2” cells was sufficient to
increase aggressive behavior in otherwise docile group-housed
mice. This gain-of-function effect has also been observed in fruit
flies (Asahina et al.,, 2014; Wohl et al.,, 2020), suggesting a con-
served function for tachykinins in controlling aggressive behav-
ior across species.

In addition to examining the role of Tac2 in social isolation-
induced aggression, recent studies by Zelikowsky et al. (2018b)
have begun to examine the role of Tac2 in mediating aggression
produced by an acute stressor. Using a rodent model of PTSD
known as stress-enhanced fear learning, these investigations
found that a series of inescapable, unsignaled, randomized foot
shocks produce a subsequent enhancement in aggressive behav-
ior. This stress-enhanced aggression was found to be mediated
by Tac2 signaling.

Despite a role for Tac2 in both isolation-induced aggression
and stress-enhanced aggression, the nature of these contribu-
tions is distinct. Nonetheless, compounds targeting the Tac2
pathway might provide promising therapeutics for trauma-
induced aggression (Fig. 1A). This is important because veter-
ans with PTSD exhibit higher incidence of aggressive behavior
relative to their non-PSTD veteran counterparts (Chemtob et
al., 1994; Jakupcak et al,, 2007). Future studies will aim to
understand the role of Tac2 in various forms of aggression and
its therapeutic potential for attenuating trauma and stress-
induced aggression as it relates to PTSD.

The role of angiotensin II in fear extinction and therapeutic
opportunities for PTSD

Growing evidence suggests that the renin angiotensin system
(RAS), a regulator of blood pressure and fluid homeostasis, is
another potential therapeutic target for PTSD (Khoury et al,
2012; Nylocks et al., 2015; Terock et al., 2019; Zhou et al., 2019).
Recent clinical studies demonstrate that losartan, a blocker of the
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angiotensin type 1 receptor (AT;R), modulates amygdala activity
and emotional processing (Pulcu et al., 2019; Zhou et al., 2019) and
accelerates fear extinction (Zhou et al., 2019). These clinical studies
support many earlier rodent studies demonstrating that brain an-
giotensin receptors are potent mediators of anxiety-like behavior
and stress responsiveness (Okuyama et al., 1999; Shekhar et al,
2006; Saavedra et al., 2011; de Kloet et al., 2016a, 2017).

Angiotensin II is the principal effector peptide of the RAS. Its
actions are mediated by binding to its primary receptor subtypes,
the AT,R and the angiotensin Type 2 receptor (AT,R). These
GPCRs are expressed in the periphery and throughout brain cir-
cuits involved in fear and anxiety, including the hypothalamus,
amygdala, hippocampus, and medial prefrontal cortex (mPFC)
(Lind et al., 1985; Gonzalez et al., 2012; de Kloet et al., 2016b).
Angiotensin II and associated peptides act on their receptor sub-
types following synthesis from enzymatic cleavage of the precur-
sor angiotensinogen (Yang et al., 1999; Grobe et al., 2008). All of
the enzymatic components for the synthesis of angiotensin II
exist in the brain, including renin, angiotensin converting
enzyme (Mendelsohn et al., 1990; Grobe et al., 2008; de Kloet et
al,, 2015), and more recently discovered (pro)renin and (pro)re-
nin receptor (Xu et al., 2016). Compared with other classic
neuropeptides discussed here, brain angiotensin II is therefore
unique in that a network of different brain cells (vs one cellular
phenotype) may contribute to the synthesis and storage of
brain angiotensin II, and thus to its contributions to various
physiological and pathophysiological functions, in a region-
and cell-specific manner. For further reading, on cellular local-
ization of brain RAS, function, and interaction with other
brain cell types, the reader is referred to a recent review (de
Kloet et al., 2015).

Brain ATRs are expressed by neurons involved in stress
responses (e.g., the hypothalamic pituitary axis) (Krause et al.,
2011) and in limbic regions important for the emotional regula-
tion of fear (Hurt et al., 2015). Notably, inhibition of AT;Rs has
been shown to facilitate fear extinction, a process necessary for
recovery from PTSD in both rodents (Marvar et al, 2014;
Parrish et al,, 2019) and humans (Zhou et al,, 2019) (Fig. 1A).
Translating between rodent and human studies, Zhou et al.
(2019) recently demonstrated that losartan (an AT;R antagonist)
improved early extinction learning through increased ventrome-
dial PFC (vimPFC) activity and functional connectivity between
the vmPFC and the BLA in humans. This enhanced vmPFC-
BLA coupling could be an important mechanism by which an-
giotensin II signaling improves fear extinction. Future clinical
studies are needed for improving the efficacy of targeting the
RAS in fear-based disorders, while application of modern neuro-
science technologies will be critical for elucidating the circuits as
well as cellular and molecular mechanisms involved in the role of
the brain RAS in fear- and anxiety-based disorders (Stout and
Risbrough, 2019).

The role of brain Type 2 receptor (AT,R) in fear learning was
recently investigated by Yu et al. (2019) using AT,R BAC-eGFP
reporter mice. The authors demonstrated that AT,R-eGFP™
neurons were predominantly expressed in the medial amygdala
and the CeM, with little AT,R-eGFP expression in the BLA or
CeL. In addition, AT,R-expressing GABAergic neurons in the
CeA were found to project to the PAG, a midbrain region con-
trolling defensive responses to threat, such as freezing (Yu et al.,
2019). These findings suggest that CeM AT,R-expressing neu-
rons may modulate CeA outputs that play a role in fear expres-
sion, and they provide new evidence for an angiotensinergic
circuit and CeM cell type in the defensive threat response. Brain
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AT Rs and AT,Rs may therefore differentially modulate fear
memory and threat responding, possibly via inhibitory and exci-
tatory CeA circuits and cortical inputs. Additional studies are
needed to test this hypothesis, as well as to further understand
angiotensin II signaling pathway interactions with other neuro-
peptide systems described here.

The role of oxytocin in fostering accurate fear discrimination
and strengthening fear responses to predictable threats

The nonapeptide oxytocin is a hormone and a neuromodulator
produced in the PVN, supraoptic nucleus, and an accessory nu-
cleus of the hypothalamus. Oxytocin is released in the extended
amygdala, including the CeA and the BNST (Ebner et al., 2005;
Martinon et al., 2019), among many other brain regions, where it
acts on its single GPCR, the oxytocin receptor (OTR). Oxytocin
has shown anxiolytic properties in animal models (Bale et al.,
2001; Ring et al., 2006) and human studies (Ellenbogen et al.,
2014; for review, see Janecek and Dabrowska, 2019). However,
the role of oxytocin in the regulation of fear responses appears
more complex (Toth et al, 2012; Guzman et al., 2013; Lahoud
and Maroun, 2013; Campbell-Smith et al., 2015; for review, see
Olivera-Pasilio and Dabrowska, 2020). Several studies to date
have shown that oxytocin neurons in the hypothalamus are acti-
vated during cued and contextual fear conditioning and during
fear recall, indicating the recruitment of the endogenous oxyto-
cin system in fear learning in male and female rats (Zhu and
Onaka, 2002; Hasan et al., 2019; Martinon et al., 2019). Notably,
activation of these oxytocin neurons has been shown to influence
the level of contextual fear. For example, as demonstrated using
the VGATE system (virus-delivered genetic activity-induced tag-
ging of cell ensembles), optogenetic stimulation of CeL-projecting
ensembles of oxytocin neurons activated during fear-conditioning
(tagged via VGATE) accelerates extinction of contextual fear in
female rats (Hasan et al., 2019). This is consistent with the major-
ity of behavioral studies reporting that activation of OTRs in the
CeA reduces contextual fear in male and female rats (Viviani et
al., 2011; Knobloch et al., 2012; Terburg et al., 2018).

In apparent contrast, in male rat BNST, OTR neurotrans-
mission has been shown to facilitate cued fear measured as
FPS. In the rat FPS paradigm, an acoustic startle reflex
(a whole-body jump, which occurs <200 ms after a white
noise burst) is potentiated by an exposure to a cue (CS, e.g.,
3.7 s light) that has previously been paired with foot shocks
(US) during a fear-conditioning session. During the FPS test,
rats are presented with startle-eliciting bursts in the presence
or absence of the CS (mixed in a pseudorandom order)
(Davis et al., 1993; Davis, 2001; Walker and Davis, 2002),
and both cued fear and noncued fear are measured. Whereas
startle potentiation during cue presentations represents cued
fear, startle potentiation observed in between the cue presentations
reflects noncued fear. However, the latter startle response does not
occur until after the cue is presented (Missig et al., 2010; Moaddab
and Dabrowska, 2017; Janecek and Dabrowska, 2019; Walker and
Davis, 2002). Therefore, a ratio between cued and noncued fear can
be used as a proxy for proper fear discrimination (Janecek and
Dabrowska, 2019; Martinon et al., 2019). Notably, studies have also
shown that noncued fear (or background anxiety) is independent of
contextual fear (Missig et al., 2010; Ayers et al., 2011).

A selective OTR antagonist administered before fear con-
ditioning (acquisition) significantly reduced cued fear and
tended to increase noncued fear measured during FPS recall
the next day, overall reducing fear discrimination (Moaddab
and Dabrowska, 2017; Janecek and Dabrowska, 2019) (Fig.
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1A). Conversely, systemic administration of oxytocin was
shown to reduce background anxiety (noncued fear) meas-
ured in male rat FPS (Missig et al., 2010; Ayers et al., 2011).
These ostensibly contrasting behavioral effects support
growing evidence that oxytocin promotes fear discrimination
by reducing sustained fear responses (contextual fear and
noncued fear) yet strengthening fear responses to signaled,
predictable, or imminent threats (Janecek and Dabrowska,
2019; for review, see Olivera-Pasilio and Dabrowska, 2020).
Indeed, recent studies investigating the BLA support the role
of OTRs in facilitating accurate fear discrimination by selec-
tively strengthening fear responses to discrete cues (CS™)
(Fam et al.,, 2018). OTR-mediated transmission in the CeA
has also been shown to mediate a switch from passive freez-
ing to active escape behaviors when an animal is confronted
with an imminent, yet escapable, threat, while reducing reac-
tivity to distant or diffuse threats (Terburg et al., 2018).

In search of potential mechanisms of these oxytocin effects,
electrophysiological studies in the CeA and the BNST have dem-
onstrated that there are two groups of oxytocin-responsive neu-
rons: one group of interneurons that is directly excited by
oxytocin and another group of output neurons that is inhibited by
oxytocin via an indirect pathway (Huber et al., 2005; Viviani et al,,
2011; Knobloch et al., 2012; Francesconi et al., 2020). In the dorso-
lateral BNST, oxytocin selectively increases the excitability and
spontaneous firing of Type I dorsolateral BNST interneurons, and
inhibits two classes of projection neurons, including Type II neu-
rons, which project to the CeA (Francesconi et al., 2020). Because
BNST activation was shown to induce sustained fear and
reduce cued fear (Meloni et al., 2006), activation of OTRs in
the BNST might facilitate cued fear and reduce sustained fear
responses by inhibiting the BNST output. Thus, reciprocal
connectivity between the CeA and the BNST plays a major
role in modulating fear discrimination.

In conclusion, oxytocin appears to increase the salience of im-
minent threat-signaling environmental cues and thereby promote
adaptive defensive behaviors while reducing fear responses to
unsignaled, distant, or diffuse threats. This is important because
increased reactivity to unpredictable threats and impaired fear dis-
crimination are two hallmarks of PTSD. In addition, as patients
suffering from PTSD demonstrate increased BNST activity
(Awasthi et al,, 2020), by ameliorating BNST hyperactivity and
improving fear discrimination, oxytocin is a promising target for
PTSD pharmacotherapy in humans.

Clinical translation of the fear-modulating effects of
oxytocin

While there is a plethora of pharmacological strategies to modu-
late oxytocin signaling, the most established approach in humans
is through activation of brain OTRs through intranasal adminis-
tration of synthetic oxytocin (IN-OT) (Gulliver et al., 2019). IN-
OT increases both blood and CSF concentrations of the peptide
(Striepens et al., 2013), which accumulates in brain tissue along
the trajectories of the olfactory and trigeminal nerves (M. R.
Lee et al., 2020). There is also emerging evidence for blood-to-
brain transport of oxytocin (M. R. Lee et al, 2018; but see
Neumann et al., 2013), which is regulated by the receptor for
advanced glycation end-products on brain capillary endothelial
cells (Yamamoto and Higashida, 2020).

Current concepts guiding the clinical translation of IN-OT
to the treatment of anxiety disorders and PTSD emphasize the
following: (1) identification of the neural targets, (2) definition
of the most effective dosage needed for target engagement, and
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(3) comparison with clinically established traditional anxio-
lytics, such as benzodiazepines (Insel, 2016). Given that fMRI-
based meta-analyses implicate hyperactivity of the amygdala in
response to perceived threats as a common pathophysiological
denominator of anxiety disorders and PTSD (Etkin and Wager,
2007), inhibition of the amygdala appears to be essential for the
therapeutic control of these conditions with IN-OT. In line
with this premise are analyses of oxytocin-pathway gene net-
works in human postmortem brains, which demonstrate
enriched OTR gene expression in subcortical regions, including
the amygdala (Quintana et al., 2019).

While there is meta-analytic evidence that IN-OT modulates
amygdala responses to perceived threats (Wang et al., 2017), fMRI
data characterizing the dose-response profile of this effect were
collected only recently. A study conducted in male human subjects
found that IN-OT-induced inhibition of amygdala responses to
threats was most effective after administration of 24 IU, whereas
481U evoked an increase in amygdala reactivity (Spengler et al.,
2017). The latter was also observed in females after administration
of 6, 12, or 241U (Lieberz et al., 2020), suggesting that IN-OT
effects likely vary as a function of dose and sex.

Notably, interplay between the mPFC and the amygdala has
been identified as a hallmark of fear extinction learning, which is
thought to mediate the efficacy of exposure therapy for anxiety
disorders and PTSD. Recently, 7T ultra-high-field fMRI was
used to test IN-OT (24 IU) against the benzodiazepine compar-
ator lorazepam (1 mg by mouth). While both lorazepam and
IN-OT inhibited the centromedial amygdala, only IN-OT
effects extended to a functional network, including precuneus
and dorsomedial mPFC (Kreuder et al., 2020) (Fig. 1B).
Crosstalk between these regions during fear extinction learning
was increased by IN-OT (24 IU), along with inhibitory effects
on the amygdala per se (Eckstein et al., 2015).

One of the clinical core symptoms of PTSD is intrusive reex-
periencing, which can be modeled over days in healthy volun-
teers exposed to filmed violence. Based on this paradigm, it was
shown that IN-OT (24 IU) not only enhanced functional connec-
tivity between the amygdala and mPFC, but also diminished
intrusions, at least in subjects who deliberately talked to their
peers about what had scared them (Scheele et al., 2019).

A recent meta-analysis confirmed the principle efficacy and
safety of IN-OT treatment for PTSD; however, as reflected by
preclinical evidence (Lieberz et al., 2020), IN-OT exerts differ-
ential, sometimes even opposing, effects in male and female
patients with PTSD (Peled-Avron et al,, 2020). Modulatory
effects of IN-OT (24 IU) on amygdala reactivity (Labuschagne
et al., 2010), amygdala-mPFC connectivity (Sripada et al,
2013), and decision-making (Hurlemann et al., 2019) have also
been reported for social anxiety disorder; however, the influ-
ence of sex as well as the optimal therapeutic dose range for IN-
OT in social anxiety disorder are unclear. As a consequence,
future clinical trials of IN-OT for anxiety disorders and PTSD
should take dose-response as well as person-related effects into
account (Andari et al., 2018). Defining the biological determi-
nants of IN-OT treatment will not only inform the clinical
translation of oxytocin neuroscience, it will also contribute to
establishing personalized care by identifying subgroups of
patients with anxiety disorders and PTSD who would benefit
most from this novel therapy.

Modulation of unpredictable threat processing by
vasopressin

Preclinical research suggests that the neuropeptide vasopressin
may contribute to PTSD, as evidenced by its association with
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relevant brain regions as well as hormonal and behavioral defen-
sive responses. Neurons in the PVN, suprachiasmatic nuclei,
medial amygdala, and BNST synthesize vasopressin (Lu et al,,
2019), and vasopressinergic projections are found in the lateral
septum and CeA (Hernindez et al, 2016; Bredewold and
Veenema, 2018). Furthermore, vasopressin plays an important
role in activation of the hypothalamic-pituitary-adrenal axis
(Rotondo et al., 2016; Nishimura et al., 2019). In rodents, aver-
sive stimuli (e.g., foot shocks) increase vasopressin levels in the
PFC and amygdala (Karakilic et al., 2018) and increase vasopres-
sin la receptor (Vla) binding in the anterior hypothalamus
(Ross et al., 2019). Moreover, intracerebral administration of
vasopressin increases anxiety-like behavior (Hernandez et al,,
2016; Herndndez-Pérez et al., 2018), while administration of
vasopressin receptor antagonists or knocking out vasopressin
receptors decreases anxiety-like behavior (Neumann and
Landgraf, 2012; Hodgson et al., 2014; Bayerl et al., 2016). Finally,
vasopressin in the lateral septum and BNST enhances aggression
(for review, see Carter, 2017; Kompier et al., 2019).

Clinical research on vasopressin has been limited by incon-
sistent assay methods and restricted pharmacological tools.
Nevertheless, researchers have found that early-life stress
affects the vasopressin system in both humans and rodents
(Hernandez et al., 2016; Kompier et al., 2019). Further, vaso-
pressin modulates human neural and physiological responses to
negative stimuli across many experimental paradigms (Thompson
et al,, 2006; Zink et al., 2010; Brunnlieb et al., 2013; R. J. Lee et al.,
2013; Motoki et al, 2016). For example, intranasal vasopressin
increased physiological arousal (measured with frontalis EMG) dur-
ing trauma recall in veterans (Pitman et al., 1993). Specific to PTSD,
in a longitudinal study of 232 war-exposed children, risk alleles on
three genes (AVPRIa, which encodes the vasopressin Vla receptor;
OXTR, the OTR; and CD38, the cluster of differentiation 38) pre-
dicted PTSD development (Feldman et al, 2014). In contrast,
plasma vasopressin levels did not predict postdeployment develop-
ment of PTSD in military subjects (Reijnen et al., 2017). Cross-sec-
tionally, de Kloet et al. (2008) found that veterans with PTSD had
higher plasma vasopressin levels than controls and that levels posi-
tively correlated with avoidance symptoms. However, police offi-
cers with PTSD had similar salivary vasopressin levels to
trauma-controls (Frijling et al., 2015); and in another study, ci-
vilian urinary vasopressin levels negatively correlated with
PTSD severity (Marshall, 2013). Discrepant results may stem
from type of assay used, timing of assessments relative to dis-
ease state, and/or population differences.

The development of a novel and specific V1a receptor antago-
nist, SRX246 (Azevan Pharmaceuticals), permits the experimen-
tal validation of vasopressin’s role in the regulation of anxiety
and fear in humans. In a proof-of-concept study, T.R.L. et al.
(unpublished data) examined the effects of SRX246 in a transla-
tional paradigm of fear (i.e., the phasic response to imminent
threat) and anxiety (i.e., a sustained response to potential threat)
using startle potentiation as a behavioral measure. Each subject
(n=36, 16 males, 20 females) received placebo and 300 mg of
SRX246, in a counterbalanced order, over 5-7 d. The study used
a double-blind, crossover, washout design. Researchers adminis-
tered the NPU (neutral, predictable, unpredictable) threat test to
probe physiological responses to threat. During neutral periods,
participants are safe from shock (i.e., threat). During predictable
periods, any geometric shape on a screen (“cue”) indicates risk
for shock, and the absence of any shape (“no-cue”) indicates
safety. During unpredictable periods, participants are at risk for
shock at all times. Anxiety-potentiated startle was operationally
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defined as the change in startle scores during no-cue from neutral
to unpredictable conditions, and FPS as the change from no-cue
to cue during predictable times. Results indicate that SRX246
decreases anxiety-potentiated startle compared with placebo (Fig.
1C). Participants with the highest subjective anxiety scores had the
greatest decrease of subjective anxiety with SRX246 compared
with placebo. Given that PTSD patients demonstrate higher startle
reactivity to unpredictable threat compared with control patients
(Grillon et al., 2009), the V1a receptor antagonist may be a novel
promising treatment target for PTSD and anxiety.

Conclusion

In conclusion, in this review, we discussed the unique transla-
tional potential of limbic neuropeptides and their receptors for
the prevention and treatment of PTSD. We described the role of
tachykinins in strengthening fear memory consolidation and the
promising effects of Nk3R antagonists as an early post-trauma
intervention against PTSD development. We discussed how
Nk3R antagonists might also act against stress- and social isola-
tion-induced aggression. We reviewed the unique potential of
angiotensin I antagonists in accelerating fear extinction in both
preclinical and clinical studies. Because one of the hallmarks of
PTSD is deficit in threat discrimination, we discussed how oxyto-
cin fosters accurate discrimination by strengthening fear
responses to predictable or imminent threats yet attenuating fear
responses to diffuse or distant threats. We further emphasized
the therapeutic potential of intranasal oxytocin, which strength-
ens functional connectivity between the amygdala and the mPFC
in humans, and therefore might facilitate proper fear extinction
similarly to angiotensin II antagonists. Finally, we described
studies showing that vasopressin V1aR antagonist attenuates
anxiety in the face of unpredictable threats in both male and
female human subjects and thus might serve as a new treatment
for PTSD (Fig. 1A-C). Collectively, these studies identify multi-
ple neuropeptides as novel and promising targets for the treat-
ment of PTSD and anxiety disorders. However, given the
heterogeneity of PTSD symptoms and clinical manifestation, it is
likely that therapeutic targeting of one neuropeptide system may
show promise for subsets of PTSD-related symptoms. This sug-
gests a need to establish personalized care by identifying sub-
groups of patients who would benefit most from each treatment.
A combination of compounds targeting neuropeptidergic recep-
tors might provide a more comprehensive treatment approach
for other patients. For these reasons, further preclinical and clini-
cal studies on interactions among limbic neuromodulators and
circuits described here are essential.
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