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Abstract
The discovery of prosocial effects of oxytocin (OT) opened new directions for studying neuropeptide effects on the human brain.
However, despite obvious effects of OT on neural responses as reported in numerous studies, other peptides have received less
attention. Therefore, we will only briefly summarize evidence of OT effects on human functional magnetic resonance imaging
(fMRI) and primarily focus onOT’s sister neuropeptide arginine-vasopressin by presenting our own coordinated-based activation
likelihood estimation meta-analysis. In addition, we will recapitulate rather limited data on few other neuropeptides, including
pharmacological and genetic fMRI studies. Finally, we will review experiments with external neuropeptide administration to
patients afflicted with mental disorders, such as autism or schizophrenia. In conclusion, despite remaining uncertainty regarding
the penetrance of exogenous neuropeptides through the blood-brain barrier, it is evident that neuropeptides simultaneously
influence the activity of limbic and cortical areas, indicating that these systems have a good potential for therapeutic drug
development. Hence, this calls for further systematic studies of a wide spectrum of known and less known neuropeptides to
understand their normal function in the brain and, subsequently, to tackle their potential contribution for pathophysiological
mechanisms of mental disorders.
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Introduction

Neuropeptides are a class of molecules that modify brain
activity in a different manner than Bclassical^ neurotrans-
mitters, such as glutamate and GABA. Indeed, the release of
neuropeptides requires a generation of hundreds action po-
tentials, resulting in exocytosis of a single secretory vesicle
from axons (Chini et al. 2017). Remarkably, the neuropep-
tide content of even a single granule is capable to effectively
bind to respective G-coupled receptors on target neurons,
initiating intracellular pathways to change cell excitability
(Chini et al. 2017). This mode of action is in accordance
with their neuromodulatory role as they regulate basic

functions such as stress, pain, or appetite, linking brain ac-
tivity to the physiological state of the whole body (van den
Pol 2012).

Because of these characteristics, neuropeptides and their
receptors constitute interesting targets for the development
of new molecule-modifying behaviors in the context of psy-
chiatric disorders, for which we have now only few and not
fully efficient drugs. Furthermore, translational research in
animals has confirmed this potential, and several attempts
have already been conducted in humans. Although some re-
sults are encouraging, the differences between patients and
animal models of disease have so far prevented real progress.

Here, we review studies that have investigated the role of
neuropeptides in the regulation of human brain activity. Using
functional magnetic resonance imaging (fMRI) in combina-
tion with pharmacological administration or gene polymor-
phism screening, researchers have been able to unveil the
cerebral regions on which neuropeptides act. We start by
discussing oxytocin (OT), as this neurohormone has received
much attention recently; secondly, we present the results of a
coordinated-based meta-analysis of its sister neuropeptide
arginine-vasopressin (AVP); finally, we review studies on oth-
er less Bpopular^ molecules and their receptors, such as
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neuropeptide S (NPS), neuropeptide Y (NPY), cholecystoki-
nin (CCK), and corticotropin-releasing hormone (CRH).
Although neuropeptides influence a wide spectrum of func-
tions, most of the focus has been directed at the study of social
behavior, more precisely how humans perceive, evaluate, and
respond to social interaction (Ruff and Fehr 2014).

Oxytocin

OT is by far the most studied neuropeptide in humans. This
comes from its effects on social behavior and the consequent
hopes of pharmacologic therapy for psychiatric disorders it
has raised (Lefevre and Sirigu 2016). Because OT is the major
focus of this special issue, we will only summarize two recent
coordinated-based quantitative meta-analyses of OTeffects on
human brain activity. The first one included 11 studies and
reported a significant modulation of BOLD signal following
intranasal (IN) OT administration, which mapped to the
insula, a region involved in emotion regulation (Wigton et
al. 2015). Other regions, such as the amygdala, were also often
reported, but no significant effect was found in the meta-anal-
ysis. The second meta-analysis included 66 studies from both
healthy and clinical populations (Wang et al. 2017). The au-
thors found that OT significantly induced both decrease and
increase in amygdala responses of healthy patients (35 stud-
ies), as well as increased activity in the caudate nucleus and
the superior temporal gyrus. In patients with autism, social
anxiety, post-traumatic stress disorders, or borderline person-
ality disorders, only a decrease in BOLD in the amygdala was
statistically significant (7 studies). When comparing patients
to healthy subjects, it was found that OT decreased activity in
the amygdala in healthy subjects to a greater degree than in
patients, regardless of their affliction, suggesting that OT ex-
erts distinct effects on healthy subjects and patients afflicted
with psychiatric conditions. Finally, it should be noted that it
remains yet unknown how IN OT exerts its effects (see the
BApplication of exogenous neuropeptides^ section for more
details), and thus these results need to be interpreted with
caution. Taken together, IN OT has been consistently found
to modulate the activity of limbic regions, such as the amyg-
dala and the insula, an effect that has been reproduced to some
extent in clinical cohorts (Domes et al. 2013; Gordon et al.
2013; Aoki et al. 2014), althoughmore studies are required for
reaching more definite conclusions. Importantly, the type of
behavioral paradigm (e.g., appetitive vs. aversive) employed
for task-dependent fMRI has an impact on the effect of OT,
leading to increases or decreases of BOLD signal (Wang et al.
2017), which is consistent with the idea that this neurohor-
mone has a context-dependent type of action (Bartz et al.
2011). In addition, sex may play an important role, perhaps
reflecting differences in basic endogenous OT concentrations
or differences in sensitivity to exogenous OT, which could be

related to interactions with sex hormones. The context- and
sex-dependent effects of IN OT underscore the need for rig-
orous dose-response (Spengler et al. 2017) and sex hormone
interaction studies (Choleris et al. 2008).

Vasopressin

AVP is a nonapeptide differing from OT by only two amino
acids. It is synthetized in the same regions of the hypothala-
mus, namely the paraventricular, supraoptic, and accessory
nuclei (Ludwig and Leng 2006). While AVP exerts rather
distinct effects at the peripheral level than OT, it has similarly
been involved in the central modulation of social behaviors
(Caldwell et al. 2008). More precisely, AVP and OT are two
peptides that share a common origin from an evolutionary
point of view, as several species only have one equivalent
fulfilling the same roles (Banerjee et al. 2016). In mammals,
it appears that OT and AVP often exert opposite effects on
social behavior (Carter and Altemus 1997), with OT promot-
ing social behavior and AVP antagonizing them, although this
vision is oversimplified, as AVP effects have been subsequent-
ly found to be both pro- and anti-social, with large variations
between species and sex (Dumais and Veenema 2015).

In humans, AVP administration is done, as for OT, via IN
spray application, which is subjects to the same critics (see the
BApplication of exogenous neuropeptides^ section).
Nevertheless, behavioral modifications after IN AVP have
been reported, such as emotion processing (Guastella et al.
2010), and more generally, social cognition, at least in males
(McCall and Singer 2012). Furthermore, alterations of AVP
receptor gene have been linked to social traits, as evident in
cooperation and competition games, and to some psychiatric
disorders such as autism and major depression (Aspé-Sánchez
et al. 2015). However, there are some discrepancies in behav-
ioral effects of AVP on rodents vs. human: while AVP has
been shown to regulate amygdala and striatum activity in ro-
dents (Huber et al. 2005; Galbusera et al. 2017), these regions
have not been found influenced by AVP in humans (see the
meta-analysis hereafter). Other areas thought to be affected by
AVP, at least in rodents, include the lateral septum and hippo-
campus (Febo and Ferris 2014; Stoop 2014). Furthermore, the
CA2 region of the hippocampus has been shown to be regu-
lated by both OT and AVP, suggesting interactive effects on
social memory (Smith et al. 2016b; Raam et al. 2017).

As stated in the BOxytocin^ section, OT has already been
reviewed extensively by others; however, its close cousin
AVP has not received as much attention and no one so far
has conducted a rigorous meta-analysis of pharmaco-fMRI
studies involving AVP. For the present review, we performed
our own meta-analysis of all existing studies that have inves-
tigated the effects of AVP on brain activity in humans engaged
in some form of social behavior. For this purpose, we used the
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PubMed database to identify fMRI experiments involving IN
AVP administrat ion. Searching for the keywords
Bvasopressin^ AND BfMRI^, we found 423 studies published
by March 2018. Out of this first-level literature search, we
identified 14 original studies in which AVP was administered
IN to healthy men before undergoing an fMRI scan. Because
AVP has sexually dimorphic effects (Rilling et al. 2013), we
selected only those studies performed on male volunteers.
Next, we eliminated five studies due to their restrictions on
regions of interest or functional connectivity analysis, leaving
nine studies for our activation likelihood estimation (ALE)
analysis (Zink et al. 2010, 2011; Rilling et al. 2012;
Brunnlieb et al. 2013a, b, 2016; Lee et al. 2013; Feng et al.
2015; Gozzi et al. 2017). Themain effects on brain activity and
behavior reported by each study are summarized in Table 1.

Because of the limited available data and in order to
best summarize the effects of IN AVP, we conducted the
ALE meta-analysis on all data, collapsing between and
within subject designs, the type of behavioral tasks
employed (which mainly involved cooperative games
and emotion processing paradigms) and the direction of
signal change. All nine studies were double-blind and
placebo-controlled. To perform our coordinate-based me-
ta-analysis, we applied the revised ALE algorithm
(Turkeltaub et al. 2012) of GingerALE (https://
www.brainmap.org/ale/), as described in details elsewhere
(Eickhoff et al. 2012). Accordingly, we used default pa-
rameters that GingerALE selects automatically for the

optimum FWHM; the statistical threshold was set at p <
0.001 uncorrected, with a cluster size of > 150 mm3. The
resulting analysis included 347 subjects and 65 reported
coordinates and revealed three clusters located in the
frontal cortex (Brodmann areas 8, 9, and 47; Fig. 1).
Note that apart from the volume threshold, no statistical
correction was employed at the cluster level.

Although the result of our analysis needs further confirma-
tion on a larger number of studies, it suggests that IN AVP
modulates cortical areas during social behavior. It can be pro-
posed that other areas, which could not be found with the
present analysis due to the limited amount of studies, are also
being modulated by AVP, perhaps in a behavior-dependent
manner.

In contrast to OT, we did not find any studies testing IN
AVP in a psychiatric population. The only one report sug-
gesting a link between the AVP-ergic system and social
behavior disorders found that several single nucleotide
polymorphisms of the AVP 1b receptor were associated
with autism (Francis et al. 2016).

In conclusion of this section, it can be speculated that AVP
modulates human brain activity and behavior, and hence, the
AVP system may be interesting as a therapeutic target for
psychiatric disorders. However, further investigation of the
capacity of AVP or its derivatives to cross the blood-brain
barrier (BBB) are required. In this line, a recent study used
an oral AVP1aR antagonist in patients with autism but obtain-
ed mixed results (Umbricht et al. 2017).

Table 1 Summary of the main effects (AVP vs. placebo) reported by the
fMRI studies included in the ALE analysis. All subjects were adult
healthy men. R, right; L, left. In some cases, no behavioral outcomes

were recorded, or were not relevant (performance on easy tasks,
reaction time, etc.), as paradigms employed simply consisted in stimuli
presentation

Reference Subjects and design Dose of IN
AVP (IU)

Behavioral task Behavioral
effects

fMRI effects

Brunnlieb et al. 2013a 36 subjects (age = 20.7),
between-subjects design

20 Taylor aggression
paradigm

None ↑ R temporal sulcus

Brunnlieb et al. 2013b 42 subjects (age = 25.8),
between-subjects design

20 Socio-emotional
perception

Not measured ↑ R amygdala, R parahippocampal
gyrus, cingulate cortex

Brunnlieb et al. 2016 34 subjects (age = 24,3),
between-subjects design

20 Stag hunt task Enhanced
cooperation

↓ L dlPFC

Feng et al. 2015 93 subjects (age = 20.7),
between-subjects design

20 Prisoner’s dilemma None Neuroticism correlated with AVP
modulation of L lateral temporal
lobe, ACC, R insula

Gozzi et al. 2017 21 subjects (age = 26.04),
within-subjects design

40 Social feedback Not relevant ↓ L temporoparietal junction, R
fusiform, ACC, mPFC

Lee et al. 2013 19 subjects (age not specified),
between-subjects design

40 Emotion perception Not measured ↓ R amygdala

Rilling et al. 2012 59 subjects (age = 20.2),
between-subjects design

20 Prisoner’s dilemma Enhanced
cooperation

Both ↑ and ↓ in many clusters of PFC

Zink et al. 2010 20 subjects (age = 28.6),
within-subjects design

40 Face-matching task Not relevant ↑ subgenual cingulate

Zink et al. 2011 20 subjects (age = 28.6),
within-subjects design

40 Social-matching task Not relevant ↓ L temporoparietal junction
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Other neuropeptides

Although OT (and to a lesser extent AVP) have attracted most
of the attention up to date, the family of neuropeptides com-
prises almost 300 members (according to this recent database
(60 of them with a PMID): http://isyslab.info/NeuroPep/)
(Wang et al. 2015), but the function of a vast majority of them
remains enigmatic in mammals. In respect to the human brain
activity, only few studies were focused on the direct effects of
systemically applied neuropeptide or on the association be-
tween gene polymorphism of neuropeptide receptors and
BOLD signal in specific regions. Here, we summarize these
very limited but valuable findings.

Neuropeptide S (NPS) is a peptide produced mainly, but
not exclusively, in anxiety and sleep-related brainstem region
such as the locus coeruleus, it is also moderately expressed in
forebrain regions like the amygdala. In rats, central adminis-
tration of NPS increases arousal and simultaneously attenuates
anxiety by acting on its unique cognate receptor NPSR (Xu et
al. 2004). In analogy, one variation of human NPS receptor
gene have been associated with stress and anxiety levels (Pape
et al. 2010). More precisely, a codon switch (Asn(107)Ile) due
to a single nucleotide polymorphism rs324981 A/T is modi-
fying the NPSR expression level as well as the NPS efficacy at

NPSR. To date, four fMRI studies have found a significant
effect of this gene polymorphism on the activity of several
brain regions, including anterior cingulate cortex (Domschke
et al. 2011), amygdala (Dannlowski et al. 2011; Streit et al.
2014), and connectivity of amygdala with other limbic regions
including insula and medial prefrontal cortex (mPFC)
(Domschke et al. 2017).

Interestingly, mPFC activity was also found to depend on
NPS receptor gene variation, as revealed by near-infrared
spectroscopy (Guhn et al. 2015), and even glutamate levels
in the anterior cingulate cortex were found to be influenced by
the allele of the NPS receptor gene (Ruland et al. 2015). The
results of the above-mentioned studies were obtained during
tasks in which subjects were exposed to fearful faces, further
pointing at the specific role of NPS in anxiety regulation.
Interestingly, it was recently demonstrated that NPS exerts at
least some of its anxiolytic action via the oxytocinergic system
(Grund et al. 2017). This line of research suggests that NPS
might be a promising target for the treatment of anxiety dis-
orders, as it may tune down several limbic regions important
for the expression of defensive behavior.

In contrast to NPS, the cholecystokinin tetrapeptide (CCK)
is known to induce panic attacks following peripheral admin-
istration in humans (Zwanzger et al. 2012). In this line, two

Fig. 1 General effects of IN AVP
on the human male brain activity.
Three clusters exceeding
200 mm3 were found at the
following: 4 39 25 (a and d), 39
29 − 4 (c), and − 8 37 39 (b and d)
(Laird et al. 2011). Each of these
clusters had two contributors
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fMRI studies have consistently reported that intravenous in-
jection of CCK provoked strong activation of panic-related
areas, such as the cingulate cortex, several other cortical re-
gions like the superior frontal gyrus and the medial temporal
gyrus, the amygdala, and regions of the brain stem (pons and
midbrain) (Schunck et al. 2006; Eser et al. 2009). It is possible
that these effects are modulated, or counterbalanced, by the
NPS system, although this remains to be investigated (Ruland
et al. 2015). Thus, further studies are required to elucidate
potential interactions of NPS and CCK and their opposite
modulation of anxiety-related brain regions.

Another neuropeptide, which is involved in the modulation
of stress responsiveness, is neuropeptide Y (NPY). It is com-
posed of 36 amino acids and widely expressed in the brain,
particularly in amygdala and striatum (Adrian et al. 1983).
Consequently, it was found that the NPY haplotype specifi-
cally influences the expression of NPY and subsequently the
activity of human amygdala and nucleus accumbens in re-
sponse to the induction of stress by painful stimuli (Zhou et
al. 2008). Other studies have found that NPY haplotype mod-
ulated BOLD signal in mPFC and cingulate cortex in reaction
to pain-induced stress (Mickey et al. 2011; Opmeer et al.
2014). To summarize, specific genetic variations (haplotype)
lead to low levels of NPYexpression, which in turn increases
neural responsivity and physiological reaction to stressful
stimuli. This also suggests that pharmacological manipula-
tions of the NPY system could have a beneficial impact on
stress and anxiety-related disorders.

Still in the attempt to alleviate pain and stress, other leads
have been so far unsuccessfully explored; for instance, sub-
stance P or CRH (Borsook et al. 2012; Contoreggi 2015). In
the case of CRH, significant efforts have been conducted in
the attempt to develop a pharmacological agent against stress
and anxiety. But while preclinical studies on rodents were
promising, results in humans were not as conclusive (Refojo
and Holsboer 2009; Sanders and Nemeroff 2016).

Application of exogenous neuropeptides

First, it should be noted that neither IN OT nor IN AVP have
been reported to produce side effects, and subjects are typically
unable to identify correctly whether they received the treatment
or the placebo. Secondly, it still remains unclear how exoge-
nously applied neuropeptides reach the brain via the nasal route
(Leng and Ludwig 2015). There have been several reports in
rodents suggesting that IN OT increases brain concentration of
OT (Neumann et al. 2013; Tanaka et al. 2018), which were not
fully confirmed in monkeys (Dal Monte et al. 2014; Modi et al.
2014; Freeman et al. 2016; Lee et al. 2017). In humans, IN OT
or AVP remains conflicting especially in terms of temporal ki-
netics when looking at cerebrospinal fluid concentrations fol-
lowing administration (Born et al. 2002; Striepens et al. 2013).

Given the reported effects of neuropeptides on BOLD signals in
human brain, several hypotheses have been proposed on how IN
administration could produce these effects (Quintana et al.
2014). First, OTandAVP could pass the epithelium and undergo
retrograde transport via the olfactory or trigeminal nerves. A
second hypothesis is that OT can reach the subarachnoid space
and diffuse from there subsequently into the brain, although no
mechanistic explanation has been brought so far. Finally, it has
not been ruled out that INOTcould exert its effect via peripheral
action as OTR are Bdisseminated^ through our body, including
skin, heart, vasculature, gut, lungs, and other organs (Poisbeau et
al. 2017). Thus, it can be speculated that IN OT activates as-
cending sensory and autonomic pathways converging via the
brainstem either onto the forebrain areas or inducing activation
of OT neurons to release the neuropeptide endogenously. This
has given researchers the idea of using endogenous molecules
known to stimulate OT release. For instance, alpha melanocyte
stimulating hormone (alpha-MSH) has been shown to activate
OT neurons and provoke dendritic release of OT (Sabatier et al.
2003; Paiva et al. 2017), and to induce prosocial behavior in
rodents (Modi et al. 2015). Hence, clinical trials are now being
envisaged in which patients would receive an oral agonist to
alpha-MSH receptor 4 (Johnson and Young 2017). While inter-
esting, it should be noted that this approach might be ultimately
limited by the role of alpha-MSH in energy homeostasis.
Another promising area of research will be the development of
non-peptide ligands that can cross the blood-brain barrier and act
on brain neuropeptide receptors.

Conclusion

Human fMRI studies support numerous reports on mammals,
including primates, demonstrating the important role of neu-
ropeptides in the modulation of socio-emotional behaviors.
However, further studies are largely limited by the unsolved
question about the penetrance of exogenously applied neuro-
peptides, exemplarily OT, through the blood-brain barrier in
primates (please see the article of Mary Lee in this special
issue). In addition, there is a need for more dose-response
experiments, as for now the typical amount administered is
supra-physiological (Leng and Ludwig 2015). Therefore, fur-
ther studies, especially on primates, are essential for under-
standing the anatomy and physiology of neuropeptide systems
and their specific role in the pathophysiology of mental disor-
ders. In addition to fMRI, the development of PET ligands
specific to neuropeptidergic systems will allow to investigate
neuropeptides receptors localization and potential pharmaco-
logic drugs mechanisms of action in vivo (Smith et al. 2016a).
In this line, PET scans have already been used to investigate
interactions between neuropeptides and other transmitters
(Striepens et al. 2014; Lefevre et al. 2017).
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