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A B S T R A C T

Mounting evidence emphasizes the usefulness of imaging biomarkers for predicting therapy outcome in major
depressive disorder (MDD), in particular building on functional imaging studies of task-based responses to
emotional face stimuli and resting state-related connectivity patterns. To explore the possibility that prediction
accuracy even in small patient samples would significantly gain from integrating data from different imaging
modalities, we acquired functional neuroimaging data both at-rest and during exposure to emotional faces from
21 MDD patients before and 7weeks after treatment-as-usual, as well as from 20 age- and gender-matched
control participants assessed at similar intervals. As expected, MDD patients showed disturbed pre-treatment
responses to emotional faces, including left amygdala hyperactivation. Therapeutic outcome correlated with pre-
treatment activation, with subgenual cingulate response to emotional faces yielding best results (r values ranging
from 0.4 to 0.66). A support vector machine classifier trained on task-based or resting-state data predicted
responder status, with the right dorsolateral prefrontal cortex connectivity pattern yielding best accuracy
(88.9%). Crucially, combining task-based with resting-state data increased prediction accuracy by 6.5–7.7
percentage points on average. From this pilot study, we conclude that multimodal functional imaging has the
potential of improving therapy outcome prediction even in small MDD sample sizes, resulting in about one
additional correct classification every 15 patients. The present results inform future studies which are needed to
consolidate imaging approaches as a means of establishing precision medicine in psychiatry.

1. Introduction

Major depressive disorder (MDD) is one of the most common psy-
chiatric conditions, currently the leading cause of disability in the US
for people 15–44 years old (1), and predicted to be among the 21st
century’s most burdensome diseases [1,2]. As remission of depressive
symptoms occurs in only one-third of MDD patients after the first an-
tidepressant trial and unsuccessful treatments prolong suffering, de-
velopment of predictive biomarkers of therapeutic outcome is at the
center-stage of current psychiatry research [3–6]. Thanks to its

increasing availability in university hospitals, functional neuroimaging
is a promising tool in that endeavor [3,7–9], with methodological ad-
vances moving towards personalized treatments based on direct pre-
treatment measures of neural and behavioral response in MDD [4].

Current neurocircuitry models of MDD emphasize disturbed func-
tional connectivity of frontostriatal and limbic regions [10–16], with
deficient emotion regulation functionality assumed to lie at the core of
the pathophysiology of MDD [3]. Emotion regulation engages, among
other regions, the amygdala and divisions of the medial prefrontal
cortex (mPFC), in particular the subgenual part of the anterior cingulate
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cortex (sgACC) [10,11,13,15,17–19]. The amygdala is a primary hub
for early (< 100ms) assessment of social and emotional stimuli
[20–23], and patients with MDD consistently exhibit reduced top-down
regulatory interactions between mPFC and amygdala, resulting in in-
creased amygdala responses to negative stimuli [12,24,25]. In parti-
cular, the processing of emotional faces [12,21,22] reliably shows ac-
tivation abnormalities in patients with MDD [26] while controlling for
higher-order cognitive processing. In addition, there is accruing evi-
dence that amygdala responses to emotional face stimuli inform treat-
ment outcome prediction in MDD [7,8,27]. Another informative brain
region in this regard is the aforementioned sgACC, which contributes to
automatic behavioral control and recognition of emotional states, re-
ciprocally communicates with the amygdala, and shows abnormal re-
sponses and connectivity signatures in MDD patients
[3,10,11,13,15,19,26,28–30]. sgACC pre-treatment hyperactivity nor-
malizes after cognitive, pharmacological and electric stimulation
therapy [13,31–33], and is predictive of therapy outcome
[11,17,34–37]: the greater the sgACC pre-treatment response to emo-
tional faces (particularly negative emotions), the greater the likelihood
of improvement resulting from pharmaco- or psychotherapy [3,8].

In contrast to task-based neuroimaging, resting-state paradigms
allow to investigate at the same time multiple distributed areas that
seem to be functionally and anatomically connected, including the
default mode network (DMN), the dorsal attention network (DAN), the
executive control network (ECN), and the salience network (SN)
[38–40]. Advantageously for investigations of MDD, resting-state con-
nectivity is less susceptible to the confounding influence of task-re-
levant cognitive impairments typical of MDD than task-based para-
digms. Several networks show altered resting-state signatures in MDD
[3,9,15,41–43], with a recent study of over a thousand MDD patients
identifying four distinct neurophysiological subtypes defined by spe-
cific patterns of dysconnectivity in limbic and frontostriatal circuits
[16]. Notably, those patterns were predictive of the response to tran-
scranial magnetic stimulation (TMS) [16]; similarly, another study re-
vealed that connectivity between nodes of the SN and the DMN was
predictive of the outcome of psychotherapy [9].

1.1. Aims of the study

The aims of this pilot study were (1) to replicate previous findings
relating brain responses to disease severity and treatment outcome
using correlation approaches [11,17,34–37] and (2) to explore the
possibility that combining data from multiple neuroimaging modalities
(namely, task-based and resting-state data) has the potential of im-
proving classification-based therapeutic outcome prediction in MDD
[3].

2. Material and methods

2.1. Participants

Functional imaging data were obtained pre- and post-treatment (7-
weeks intervals on average) from 21 patients with MDD, and at com-
parable intervals from 20 age- and sex-matched healthy participants
(Table 1). Patients were recruited from August 5, 2013, to January 9,
2015. All patients met DSM-IV criteria for unipolar major depressive
disorder (MDD), diagnosed by structured clinical interview for DSM IV
[44] conducted by specialist physicians of the University Medical
Center in Bonn, and were under treatment according to current
guidelines for MDD for the duration of the present study (56) and re-
ceived selective serotonin reuptake inhibitors (N=11), Alpha2-re-
ceptor-antagonists (N=6), atypical antipsychotics (N= 5), and group
behavioral therapy (N=16). Exclusion criteria for patients were sui-
cidal ideation, psychotic symptoms and MRI contraindications; for
healthy participants, exclusion criteria were any lifetime axis I or II
psychiatric disorder and any past or current psychoactive medication.

This study was conducted according to the principles of the Declaration
of Helsinki 2008 and approved by the local Institutional Review Board
(IRB). In accordance with the guidelines of the ethics committee, the
study procedures were fully explained prior to the participants pro-
viding written informed consent.

2.2. Criteria for response

Study outcome used for the correlation analyses was % change in
Beck’s Depression Index (BDI) (58) as a result of treatment, and study
outcome used for classification analyses was treatment response, de-
fined as a ≥50% decrease from the baseline BDI scores.

2.3. Task-based fMRI experimental paradigm

We employed short-duration presentation of emotional faces, a
paradigm previously used in several MDD studies [7,12,24,45]. Stimuli
consisted in pictures of faces expressing fear, anger, sadness, disgust,
happiness, and no emotion (neutral), selected from the Karolinska Di-
rected Emotional Faces [46]. These stimuli were presented near the
threshold of conscious awareness by presenting an emotional face
picture very briefly (33ms), followed immediately by a neutral face
picture from the same actor presented for 800ms. Individual char-
acteristics (e.g. hair) were covered using a mask with the same colour as
the background, leaving an oval aperture for the facial features. The
inter-stimulus interval varied between 5.5 and 7.5 s (uniform distribu-
tion). In each fMRI run, nine stimuli were presented for each emotion in
an event-related design; participants underwent 4 runs of about 6min
duration each. Previous psychophysical tests have shown that with this
presentation schedule, emotional faces are close to or below the sub-
liminal threshold for discrimination according to signal detection cri-
teria, i.e. most individual participants cannot detect the emotional face
stimulus nor discriminate the facial expression [47]. As the aim of this
experiment was to measure the response in emotion-related brain re-
gions to emotional face stimuli, participants were asked to report the
gender of the face stimuli, a task that focused their attention on the face
but was irrelevant to the research question. Stimulus presentation and
response collection was implemented using Presentation software
(Neurobehavioral Systems, Albany, CA), liquid crystal display video

Table 1
Demographics of participants and clinical scores. Column p indicates p values of
a chi-square test (sex) or two-sample t-tests comparing values in patients and
controls, or, for “Improvement” data, comparing patients’ pre-treatment vs.
post-treatment values.

MDD N=21 Controls N=20 p

Mean (SD) Range Mean
(SD)

Range

Sex (M/F) 14/7 – 11/9 – 0.44
Age (years) 37.5

(13.5)
19–62 37.4

(13.7)
19–59 0.92

Education (years) 15.2 (2.8) 11–22 16.4
(2.6)

13–23 0.20

N major episodes 2.82 (2.6) 0–10 0 0 –
Duration of current

episode (months)
10.8
(12.2)

1–48 – – –

T1-T2 interval (days) 46.8 (9.6) 33–63 53.1
(17.3)

39–70 0.23

Pre-treatment BDI 31.8
(10.2)

9–54 2.8 (3.2) 0–10 <0.001

Post-treatment BDI 19 (11.6) 2–39 – – –
Improvement BDI 38.1%

(35.5)
−44 to
95

– – <0.001

Pre-treatment HAMD 19.4 (8.7) 8–44 0.7 (1.1) 0–4 <0.001
Post-treatment HAMD 10.9 (5.6) 2–25 – –
Improvement HAMD 35.0%

(43.8)
−100 to
89

– – <0.001
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goggles (Nordic NeuroLab, Bergen, Norway) and a custom MRI-com-
patible response box.

In line with previous studies [21], participants were asked after the
experiment whether they had noticed any abnormalities about the face
stimuli presented, to ensure that the emotional faces presented were
below the subjective level of awareness. These interviews revealed that
3 patients and 2 control participants had, in some trials, perceived 2
faces presented in rapid succession, one of which displayed an emotion.
To ascertain that these participants did not drive the reported effects,
we repeated the analysis after omitting these participants’ data but
observed no substantial changes in the results. In order to evaluate if
the information perceived during the task was sufficient for recognition
of the presented emotions, a sample of 12 patients repeated the ex-
periment after the fMRI scan at measurement time 2 (i.e. post-treatment
or equivalent) and attempted to categorize the face stimuli into six
categories (five emotions plus neutral; i.e., a six-alternative forced
choice task). Classification performance was not different from chance
(mean % correct: 17.5; standard deviation: 3.4; t-test vs. chance: t(11)
=0.85, p=0.41), indicating that the masking procedure prohibited
conscious emotion recognition.

2.4. MRI data acquisition

MRI data were acquired using a 1.5 Tesla Avanto MRI system
(Siemens, Erlangen, Germany) equipped with a 12-channel standard
head coil at the Life & Brain Centre, Bonn. Imaging data were collected
for each participant and measurement point (pre- and post-treatment
for participants with MDD, and at similar time intervals for control
participants), and consisted in four task-based runs with 119–127
functional images each and one resting-state run (5.75min, 115 vo-
lumes, eyes closed) obtained using a T2*-weighted gradient-echo planar
image (EPI) sequence (voxel size= 3×3×3mm; TR=3000ms;
TE= 45ms; flip angle= 90°; FoV=192mm; matrix size= 64×64;
35 slices; interleaved slice order with interslice gap of 1mm). Slices
were oriented parallel to the intercommissural plane (AC-PC line).
Subsequently, a high-resolution structural image was acquired using a
T1-weighted 3D MRI sequence (voxel size= 1×1×1mm;
TR=1660ms; TE= 3.09ms; flip angle= 15°; matrix
size= 256×256, no interslice gap). Participants wore earplugs and
foam padding was used to reduce head motion.

2.5. Task-based fMRI data analysis

The fMRI data were preprocessed and processed using SPM12
software from the Wellcome Trust Centre for Neuroimaging (www.fil.
ion.ucl.ac.uk/spm) running in MATLAB R2015A (The MathWorks,
Natick, MA). Preprocessing followed standard procedures as in our
previous studies [48]. In brief, after discarding the first 5 images to
ascertain that T1-equilibration artefacts were eliminated from the time-
series, images were motion-corrected using realignment, the anatomical
T1 image was co-registered with the aligned functional images, spa-
tially normalized to the Montreal Neurological Institute (MNI) standard
space using a two-step procedure including segmentation of the T1-
image and application of the resulting transformation parameters to the
functional time-series, resampled at a 3×3×3mm resolution, and
finally smoothed by convolution with a 8-mm full width at half max-
imum 3D Gaussian kernel [49]. Preprocessed fMRI data were analyzed
using the general linear model (GLM) framework implemented in
SPM12, following a 2-step mixed-effects analysis, as is common in SPM
for group analyses [50]. The first step used a fixed-effects model to
analyze individual data sets, and the second step used a random-effects
model to analyze the group aggregate of individual results, described
under “whole-brain analysis”, below. For the fixed-effects model, a
temporal high-pass filter with a cutoff of 128 s was used to remove low-
frequency signal drifts and an autoregressive model (AR 1+white
noise) was used to estimate serial correlations in the data. A masking

threshold level of 0.2 was used to determine voxel inclusion in the
analysis. Following that, a linear combination of regressors in a design
matrix was fitted to the task-based data to produce beta estimates [51],
which represent the contribution of a particular regressor to the data.
The GLM applied to the individual data sets contained separate re-
gressors of interest for each experimental condition (i.e. faces expres-
sing fear, anger, sadness, disgust, happiness and no emotion). These
regressors were created by modeling the onset and duration of each
stimulus as a series of delta functions representing probable neural
events, this time-series was then convolved with the canonical hemo-
dynamic response function (HRF, implemented as a sum of 2 gamma
functions in SPM12) to yield predictions of changes in BOLD signal
evoked by the stimuli. The design matrix further included a constant
term, and 6 realignment parameters (yaw, pitch, and roll and X-, Y-,
and Z-axis translation terms, obtained during motion correction) used
to model movement-related artefacts not eliminated during realign-
ment (e.g., spin-history effects). 3D parameter estimate maps for each
of our experimental conditions (i.e. faces expressing fear, anger, sad-
ness, disgust, happiness and no emotion) were produced for each par-
ticipant and measurement session (i.e. one per scanning day) and used
to calculate contrast maps (see second-level analyses, below).

2.6. Resting-state fMRI data analysis

Resting-state data were analysed using the CONN toolbox for SPM
(68), including default preprocessing settings such as slice-time cor-
rection, unwarping, denoising using a band-pass filter [0.008–0.09 Hz]
and smoothing with a 8-mm full width at half maximum 3D Gaussian
kernel. We ran both whole-brain correlation analyses using regions-of-
interest (ROIs; see below) as seeds, and seed-to-seed correlation ana-
lyses for each subject and measurement point. Seeds were anatomically-
defined ROIs relevant in the pathophysiology of depression. They in-
cluded left and right subgenual cingulate (sgACC, Brodmann Area 25)
and left and right amygdala (entire Amygdala, defined using the
Anatomy toolbox version 2.1 [52,53]), as well as several regions
identified in analyses of the brain at rest, identified using 5mm-dia-
meter spheres centered on coordinates previously published and used in
an MDD study [9,40]: left and right intraparietal sulcus (MNI co-
ordinates: [−41 −39 45; 44 −39 45], part of the dorsal attention
network=DAN), left and right dorsolateral prefrontal cortex ([−32 45
30; 32 45 30], executive control network=ECN), left and right ante-
rior insula and dorsal anterior cingulate cortex ([−41 3 6; 41 3 6; 0 21
36], salience network= SN), medial prefrontal cortex and precuneus
([−1 54 27; 0 −52 27], default-mode network=DMN). Whole-brain
correlation maps were Fischer-Z transformed, compared across parti-
cipant groups and measurements, and used in correlation analyses with
disease severity or treatment effects. Seed-to-seed data were compared
across participant groups and measurements and used in correlation
analyses with disease severity or treatment effects and for patient
classification analyses.

2.7. Whole-brain group (second-level) analysis

Single-subject parameter maps (task-based data) or Fischer-trans-
formed correlation maps (resting state data) of MDD participants MDD
and controls, for both measurement points, were smoothed with a
Gaussian kernel imported separately into SPM12′s full-factorial analysis
of variance (ANOVA) model to evaluate group statistics (second-level
analysis; random effects). For task-based data, effects assessed in each
voxel of the brain were the response to emotional faces overall (all
emotions vs. neutral), and the response to each type of emotional face
(i.e. fear, anger, sadness, disgust, happiness each contrasted with neu-
tral) assessed within regions showing differences in the response to
emotional faces overall. For the resting-state data, we assessed the
connectivity between each seed region and the whole brain. SPM12
uses the Greenhouse–Geisser correction for nonsphericity in the data.
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The results were controlled for multiple comparisons by using a whole-
brain, voxel-wise family-wise error correction (pFWE=0.05).
Locations of peak activation were defined using MNI coordinates.

2.8. Region-of-interest analysis of task-based fMRI data

We further analysed task-based responses in bilateral amygdalae
and subgenual cingulate regions (anatomically-defined, see resting-
state analysis above). Parameter estimates for each ROI were extracted
from all voxels included in the GLM analysis and averaged across
voxels. Parameter estimates in clusters that showed hyper- or hypo-
activation in response to emotional faces in patients vs. controls (see
Results) were extracted and processed in the same fashion. The re-
sulting summary parameter estimates were then compared across
conditions, participant groups and measurements and used in correla-
tion and classifier analyses. ROIs were identical across all participants.

2.9. Treatment outcome prediction: classification procedure

To predict responder status (responder/non-responder) we em-
ployed libsvm [54] (available at http://www.csie.ntu.edu.tw/~cjlin/
libsvm), a commonly-used implementation of a support vector machine
(SVM) run within MATLAB R2015A on a MacPro (late 2013 model)
3.7 GHz Quad-Core Intel Xeon E5 with 64 GB 1866MHz DDR3 RAM.
The type of SVM used was C-SVM.

Features were, for the task-based data, the parameter estimates
(“Beta” values calculated in SPM) of the response to each kind of
emotional face, averaged across voxels of each ROI, and for the resting-
state data, the connectivity (r) values obtained between a given ROI and
the other ROIs of interest. The reason for evaluating responses to
emotions separately in the task-based data and evaluating connectivity
profiles separately by ROI for the resting-state data is that for task-
based data neural responses to different emotions were found to be
differently predictive of treatment outcome in previous work and
combining task-based data across ROI yielded robust classification
findings, while many ROIs were candidates for connectivity changes
between patients and controls based on the resting-state data. All fea-
tures were normalised to values between 0 and 1. There was no missing
data.

Parameters were either at default values (free parameter of the
Gaussian radial basis function g=1/number of features; tolerance of
termination criterion=0.001) or were systematically assessed: the
parameter for the soft margin cost function C was varied (values of 1, 2,
3, 5, 10 and 20 were tested), and 4 kernel types (linear, polynomial,
radial basis function, sigmoid) were tested. At this optimization stage,
all resulting combinations of kernel and C value were tested in a grid
search, performance values (raw accuracy) for all conditions of each
modality (task-based or resting-state) were averaged, and the combi-
nation yielding the highest average performance was identified: poly-
nomial kernel with C= 1. This kernel and C=1 were then used to
compare classifier performance across conditions and data types.
Classifier performance was evaluated using a leave-one-patient-out
cross-validation scheme: data from all but one patient were used to
train the classifier (labels were responder and non-responder), and
correct categorization (as responder or non-responder) of the patient
not used during training by the trained classifier was considered a
correct response. This procedure was repeated N times, where
N=number of patients, yielding a classification accuracy score (N
correct classifications/N patients). Significance of the classification
accuracy score in each condition was assessed using permutation sta-
tistics [55,56]: the actual accuracy scores were compared to a reference
distribution of accuracy values observed under the null hypothesis that
the data features had no systematic relation to the patient’s responder
status. This distribution was built by repeating the leave-one-patient-
out cross-validation scheme described above 10′000 times, each time
shuffling the patients’ labels (responder or non-responder) anew during

classifier training. The p-value of a classification accuracy score was
then the fraction of the distribution of accuracy values under the null
hypothesis that was greater than, or equal to, the accuracy score ac-
tually observed using the correct labels. P values resulting from this
procedure were corrected for multiple comparisons across conditions
using the Holm-Bonferroni procedure [57].

3. Results

3.1. Treatment response

Changes in BDI and HAMD scores in patients as a result of treatment
are presented in Table 1. We found a significant decline from pre-
treatment to post-treatment, a clinically meaningful response [58]. Out
of our 21 patients, there were 7 responders based on BDI criteria.

3.2. Task-based hyper- and deactivations in patients pre-treatment

One cortical brain region showed higher activity during the pre-
sentation of emotional faces (contrast: all emotions > neutral faces) in
patients pre-treatment (compared to both patients post-treatment and
controls; conjunction contrast): the right postcentral gyrus [MNI co-
ordinates: 50–22 60; Z=4.84; cluster size 689 voxels/12 voxels sur-
vived voxel-wise p < 0.05 FWE threshold]. Cortical brain regions with
lower activity in patients pre-treatment (compared to both patients
post-treatment and controls) were left inferior frontal gyrus [−36 21
12; Z=5.72; 70/15 voxels], two locations in left middle frontal gyrus
[−42 18 42; Z=5.62; 152/31 voxels and −30 30 34; Z=4.7; 86/2
voxels], precuneus [−8 −54 52; Z=4.7; 204/2 voxels], and right
posterior middle temporal sulcus [50–50 2; Z=4.77; 80/2 voxels].
These results are shown in Fig. 1A.

3.3. BOLD response to emotional faces in amygdala and subgenual
cingulate ROIs

As expected, we found an increased response to emotional com-
pared to neutral faces in the left amygdala in MDD at T1 compared with
controls, which normalized after therapy (3-way ANOVA with factors
measurement timepoint, subject type and emotion; interaction between
measurement timepoint and subject type: F(1,189)= 11.80,
p < 0.001; Fig. 1B). There was no significant effect of emotion or in-
teraction between emotion and subject type or measurement point.
Activation in subgenual cingulate cortex (sgACC) did not significantly
vary with subject type, measurement timepoint or emotions.

3.4. Correlations between BOLD response to emotional faces and pre-
treatment disease severity or treatment outcome

Next, we examined whether the BOLD signal in regions showing
abnormal responses to emotional faces in patients and in the anato-
mically-defined amygdala and subgenual cingulate regions correlated
with disease severity and therapy response in patients. The aim of this
analysis was to replicate previous similar findings [11,17,34–37]. While
correlations between disease severity and activation were not sig-
nificant, we did find significant correlations between the effects of
therapy (% BDI change) and pre-therapy activations in several ROIs
(Table 2). Interestingly, different regions showed significant correla-
tions depending on the BOLD contrast used, as follows. Using the BOLD
response to neutral faces, we found significant positive correlations in
left IFG and precuneus, and negative correlations in right postcentral
gyrus and right amygdala; using the BOLD response to the emotional
faces, we found significant positive correlations in precuneus for sad
faces only. None of these correlations survived correction for multiple
comparisons, in contrast to the strong positive correlations we obtained
with bilateral subgenual cingulate regions’ responses to all emotions.
When we subtracted the response to neutral faces from the response to
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emotional faces, we found negative correlations for one or more emo-
tions in all regions we investigated (of which only two survived cor-
rections for multiple comparisons), except in the amygdala and sub-
genual cingulate regions. In the amygdala, we found strong positive
correlations for several emotions, many of which survived correction
for multiple tests, while in the subgenual cingulate, we found positive
correlations for several emotions that did not survive multiple com-
parisons (Table 2).

3.5. Functional connectivity based on resting-state data

A whole-brain search for correlations between resting-state activity
in our regions of interest for connectivity analyses and all voxels of the
brain revealed that compared with healthy controls, patients showed
before treatment a reduced connectivity between the right subgenual
cingulate (sgACC) and the right middle frontal gyrus [54 20 14;
Z=4.86; cluster size 25 voxels] (Fig. 2). However, in the conjunction
contrast comparing patients pre-treatment to both patients post-treat-
ment and controls, no significant results were found. There was no
significant correlation between BDI or change in BDI during treatment

Fig. 1. Abnormal neural response to emotional
faces in MDD. A: left inferior and middle frontal
gyrus, precuneus and right posterior middle
temporal sulcus show decreased (green, blue
circles) and right postcentral gyrus shows in-
creased (yellow, red circles) BOLD responses
during presentation of emotional faces compared
to neutral faces, in patients pre-treatment com-
pared to both patients post-treatment and con-
trols (conjunction contrast). Results are shown
here rendered on the average structural scan of
all participants, and are thresholded at p < 0.05
corrected for family-wise errors (FWE) resulting
from multiple comparisons across all voxels of
the brain. X and Z values indicate the position of
the slice in MNI coordinate space. B: Left
amygdala showed an increased response to
emotional compared to neutral faces in MDD
pre-treatment compared with controls; this re-
sponse decreased after therapy. (For interpreta-
tion of the references to colour in this figure le-
gend, the reader is referred to the web version of
this article.)

Table 2
Variance in BDI change (range: 0–1) explained by activation in amygdalae,
subgenual cingulate cortex and clusters showing abnormal response to the
emotional faces in patients, as a function of the emotion of the face presented.
MFG=middle frontal gyrus; DLPFC=dorsolateral prefrontal cortex;
IFG= inferior frontal gyrus; pMTG=posterior middle temporal gyrus;
sgACC= subgenual anterior cingulate cortex. *= p < 0.05 (uncorrected),
**= p < 0.05 (Holm-Bonferroni-corrected). Values in italic indicate a nega-
tive correlation. Correlations were calculated either using the response evoked
by each kind of face stimuli (top half), or after subtracting the response evoked
by neutral face stimuli from the response evoked by emotional faces (bottom
half).

Correlations between activation and clinical improvement

Activation evoked by each kind of face

Neutral Angry Disgusted Fearful Happy Sad

MFG left 0.15 0.01 0.08 0 0.02 0.08
DLPFC left 0.06 0.01 0.00 0.10 0.01 0.04
IFG left 0.39* 0.13 0.21 0.03 0.21 0.06
pMTG right 0.16 0.05 0.03 0 0.01 0
Precuneus 0.42* 0.26 0.13 0.02 0.25 0.26*

Postcentral
right

0.29* 0.08 0 0.04 0.12 0.04

Amygdala
left

0.25 0.06 0.02 0 0.06 0.03

Amygdala
right

0.29* 0.02 0.12 0.05 0.01 0

sgACC left 0 0.43* 0.53** 0.66** 0.59** 0.59**

sgACC right 0 0.40* 0.45* 0.61** 0.65** 0.53**

Activation difference between each kind of emotional face and the neutral face

Angry Disgusted Fearful Happy Sad

MFG left – 0.30* 0.16 0.42* 0.27* 0.14
DLPFC left – 0.17 0.19 0.29* 0.17 0.28*

IFG left – 0.40* 0.33* 0.29* 0.13 0.23
pMTG right – 0.37* 0.51** 0.25 0.15 0.32*

Precuneus – 0.23 0.30* 0.48** 0.10 0.05
Postcentral

right
– 0.23 0.30* 0.12 0.06 0.24

Amygdala
left

– 0.58** 0.17 0.63** 0.49** 0.43*

Amygdala
right

– 0.53** 0 0.04 0.31* 0.17

sgACC left – 0.34* 0.19 0.25 0.38* 0.31*

sgACC right – 0.23 0.11 0.23 0.40* 0.29

Fig. 2. Results of resting-state functional connectivity analyses. A: Before
treatment, patients showed a reduced resting-state functional connectivity be-
tween the right subgenual cingulate (sgACC) and the right middle frontal gyrus
compared with healthy controls (conventions as in Fig. 1). B: Therapy resulted
in a reduction of resting-state connectivity between seeds in right dorsolateral
prefrontal cortex and right intraparietal sulcus in patients. Red dots are pro-
jections on the right hemispheric surface of the location of connectivity seeds
included in the analysis. IPS= intraparietal sulcus; dACC=dorsal anterior
cingulate cortex; DLPFC=dorsolateral prefrontal cortex; MPFC=medial pre-
frontal cortex; AI= anterior insula; sgACC= subgenual anterior cingulate
cortex; AMY= amygdala. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
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on one hand and connectivity between resting-state activity in our re-
gions of interest and all other regions of the brain on the other hand.
Systematic pairwise seed-to-seed correlation analyses between regions
of interest revealed that patients’ functional connectivity between right
DLPFC and right IPS was significantly reduced as a result of therapy (t
(20)= 5.745, pcorr = 0.01, 2-sample t-test with Holm-Bonferroni cor-
rection for multiple comparisons). There was no difference in seed-to-
seed connectivity between patients and controls and no correlation
between seed-to-seed connectivity and pre-treatment BDI or change in
BDI as a result of treatment.

3.6. Prediction of responder status: comparing classifier performance based
on data of one imaging modality or combined across imaging modalities

Finally we addressed the main aim of this study: we assessed whe-
ther responder status (i.e. whether a patient responded to treatment or
not) could be predicted based on the task-based activations evoked by
each emotion (combined activation across ROIs), the resting-state data
(pattern of seed-to-seed connectivity for each seed tested), or a com-
bination of task-based and resting-state data. Results (Table 3) show
that prediction was indeed possible, that prediction based on task-based
data tended to be better (69.4 vs 59% correct, a non-significant dif-
ference: t(17)= 1.60, p < 0.13), and importantly, that supplementing
the data of one kind with the best data of the other kind yielded sig-
nificant improvements of 6.5 percentage points for task-based data (t
(5)= 3.79, p < 0.02) and 7.7 percentage points for resting-state data
(t(12)= 2.47, p < 0.03). Thus, combining imaging modalities yields
one additional correct identification every 15 patients.

4. Discussion

The aim of the present pilot study was to explore the potential of
combining data from different functional neuroimaging modalities to
predict treatment response in MDD. Specifically, we tested the hy-
pothesis that prediction performance could be improved by combining
task-based and resting-state neuroimaging data. We replicated previous
findings by showing that treatment response can be related to activa-
tion differences across patients and could be predicted both from task-
based and resting-state data. Crucially, we demonstrate that integrating
these two modalities increases prediction accuracy, resulting in about
one additional correct classification every 15 patients.

Comparing neural responses in patients pre-treatment against their
post-treatment activations as well as against controls, we found in-
creased responses to emotional faces in right postcentral gyrus and the
left amygdala, and decreased responses in left inferior and middle
frontal gyrus, precuneus, and right posterior middle temporal sulcus.
Except for the postcentral gyrus, these regions have all been associated
with emotional responses, emotion recognition, and emotion regulation
[59], and most have previously been shown to abnormally respond to
emotional stimuli in mood disorders [3,26,29]. The effects of therapy
correlated very well with the following aspects of these activations: (a)
pre-treatment response to neutral faces in precuneus, left inferior
frontal gyrus, right amygdala and right parietal cortex; (b) the response
to emotional faces in subgenual cingulate; and (c) the differential re-
sponse to emotional vs. neutral faces in most of these regions. In gen-
eral, in regions deactivated in patients pre-therapy compared to post-
therapy and compared to controls, responses correlated negatively with
therapy outcome. Our results thus confirm the vast previous findings
indicating that MDD therapy outcomes correlate with neural responses
to neutral and emotional stimuli [3,8]. However, our results reveal a
contrast between findings in regions responding to emotional faces
compared to findings in subgenual cingulate: in the former regions, the
highest correlations with therapy outcome were obtained using a dif-
ferential response (response to emotional faces minus response to
neutral faces, thus removing responses to the face per se), and the
emotion with best results varied across regions; while in the subgenual
cingulate, the response to emotional faces allowed extremely robust
prediction results (positive correlations) using the response to each of
the emotions (Table 2). The latter finding concords very well with
previous reports of subgenual cingulate activity being predictive of
therapy outcome [11,17,34–37], in particular with the common finding
that greater activity relates to greater improvement [3,8]. Our results
are thus in line with previous findings reporting that task-based acti-
vation correlates with therapy outcome.

Analysis of the resting-state data revealed reduced connectivity
between the right subgenual cingulate and the right middle frontal
gyrus in patients compared to controls. This finding is consistent with a
large body of literature demonstrating abnormalities in the emotion
regulation network in MDD, particularly connectivity between sub-
genual cingulate and other prefrontal regions
[3,10,11,13,15,19,26,28–30]. Further, therapy resulted in reduction of
seed-to-seed connectivity between right DLPFC and right IPS in MDD
patients. These data confirm previous findings of abnormal seed-to-seed
connectivity in MDD [15,41–43], specifically about connectivity be-
tween dorsolateral prefrontal and inferior parietal cortex [60], and
findings indicating that therapy leads to changes in connectivity
[61–63]. While therapy outcome can be predicted from changes in
resting-state connectivity [9,16,62], our data have not yielded such
results, most probably due to the relatively small sample of patients
included in the study.

Using a common Support Vector Machine (SVM) algorithm, we
could predict patients’ response status with an accuracy of up to 88.9%
based on neuroimaging data. Prediction using task-based data was on
average 10 percentage points higher than prediction based on resting-
state data, but the highest prediction scores were obtained using the

Table 3
Results of a classifier (SVM, see Methods) predicting treatment responder status
of one patient based on the task-based and/or resting-state data of the other
patients, as a function of the emotion of the face or the seed of the resting-state
fMRI connectivity. Values indicate average improvement in percentage points.
*= p < 0.05; **= p < 0.001. P values are corrected for multiple compar-
isons using the Holm-Bonferroni method. CI= confidence interval.
MPFC=medial prefrontal cortex; dACC=dorsal anterior cingulate cortex;
AI= anterior insula; DLPFC=dorsolateral prefrontal cortex;
IPS= intraparietal sulcus; sgACC= subgenual cingulate.

Name of
condition

Accuracy (%) Accuracy combined with
best resting-state data
(%)

Improvement %
points

Treatment outcome prediction using task-based activation data
Neutral 66.7 77.8* 11.1**

Angry 72.2 77.8* 5.6
Disgusted 61.1 72.2* 11.1**

Fearful 72.2 72.2* 0
Happy 77.8* 83.3** 5.5
Sad 66.7 72.2* 5.5**

Mean (CI) 69.4 (5.8) 75.9 (4.5) 6.5 (4.2)

Prediction using resting-state connectivity data
MPFC 44.4 66.7 22.3**

Precuneus 50 66.7 16.7**

dACC 55.6 61.1 5.5**

AI left 50 55.6 5.6**

AI right 61.1 55.6 −5.5
DLPFC left 88.9** 83.3** −5.6
DLPFC right 77.8 72.2 −5.6
IPS left 83.3* 77.8 −5.5
IPS right 50 72.2 22.2**

Amygdala left 55.6 77.8* 22.2**

Amygdala right 61.1 66.7 5.6*

sgACC left 38.9 55.6 16.7**

sgACC right 50 55.6 5.6*

Mean (CI) 59.0 (15.3) 66.7 (9.6) 7.7 (11.2)
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latter. Interestingly, significant prediction from task-based data could
be obtained only using the response to happy faces, while significant
prediction from resting-state data could be obtained only from the
connectivity pattern originating in the left intraparietal sulcus or the
left dorsolateral prefrontal cortex. While our analysis is based on a
small sample of patients and the classification accuracies we report are
thus likely to be inflated [64], our findings suggest that results based on
only one kind of neuroimaging data are more variable across patient
subsamples than results based on multiple kinds of data. Combining the
best-predicting resting-state data with the task-based data significantly
improved accuracy, enabling significant prediction using the data of all
emotional faces. While the complementary manipulation of combining
the best-predicting task-based data with the resting-state data again
also significantly improved accuracy overall, the number of seeds
yielding significant prediction results was left unchanged (N=2 seeds),
and four seeds even showed decreased accuracy, indicating that the
classifier relied on non-informative data features. These results suggest
that the best method to achieve significant prediction is to supplement
task-based data with the resting-state connectivity pattern of the left
dorsolateral prefrontal cortex.

In our present data, clinically important, task-based prediction of
therapy outcome could be obtained only using the response to happy
faces; with the subgenual cingulate cortex’ response to happy faces
eliciting the strongest associations with clinical outcome. Differences in
the ability to emotionally process positive facial expressions have cru-
cial implications for the therapeutic relationship [65] and the possibi-
lity to capitalize on social reinforcements [66], both of which are es-
sential ingredients of depression therapy [67].

We must acknowledge several limitations of our pilot study, which
suggest that the preliminary results presented here should be taken with
caution. First, the patient sample from which the data where acquired
was very small (N=21), heterogeneous in age, disease severity and
duration, outcome, treatment protocol and recruited from only one site.
Second, several aspects of the analysis may be optimized in future work.
While we used a valid classification procedure relying on simple leave-
one-patient-out cross-validation, this approach has recently been shown
to yield artificially high accuracies in small samples [64,68]. Notably,
as we optimised the parameters and tested the model using the same
dataset, higher accuracies may have occurred by chance or through
classifier overfitting. Recent developments such as nested cross-vali-
dation [69] have demonstrated higher reliability and show great pro-
mise for further investigations aiming to uncover the most relevant
variables for accurate treatment outcome prediction. Further particu-
larities of our analyses should be mentioned, for example the fact that
we did not use the same number of ROIs for the analysis of task-based
and resting-state data (comparing accuracies based on the different
kinds of data was not an aim of our study), and the fact that using
balanced accuracy rather than raw accuracy may be a better option for
analysing classes of unequal sizes. The small sample size and these
methodological details may be the reason why we observed large var-
iations in prediction accuracy across conditions (task-based:
44.4–88.9%, resting-state-based: 61.1–77.8%). This variation might be
due to genuine differences in information content regarding outcome
across regions or to noisy data. For this reason, we did not expand too
much on the differences across conditions. Our aim was to evaluate if
combining modalities improves prediction accuracy irrespective of the
number of ROIs contributing to each modality, and we have considered
the conditions as that many tests allowing address this question. The
results are coherent: accuracy for each modality can be improved by
adding data from the other modality.

Another important aspect of this study is that we have only at-
tempted to predict treatment outcome in general and not outcomes for
different treatments. This second aspect is necessary to reach the ulti-
mate goal of the present research, which is to provide recommendations
for specific treatments for individual patients. Some successes have
already been achieved in this direction e.g. [70]. Our present work

shows that combining multiple neuroimaging modalities improves
outcome prediction; future work combining clinical data and different
kinds of neuroimaging data may prove promising in order to identify
the best treatment option for each individual.

Regarding the practical value of our approach, we must admit that
acquiring MRI data is expensive in comparison to collecting clinical
questionnaires. However, MRI scanners are nowadays quite widely
available, data analysis is largely user-independent (especially for
routine anatomical scans but also for simple functional paradigms), and
crucially, the technique measures neurobiological variables rather than
subjective mental states. The latter aspect allows to apply the technique
even to patients incapable of reliable introspection or affected by
mutism due to severe MDD. Future developments in the neuropsycho-
pathology of MDD may provide more precise constraints on the brain
regions to consider for outcome prediction, further improving predic-
tion performance. Therefore, despite its costs, we believe that MRI-
based outcome prediction is a useful avenue to pursue.

In summary, our study confirms the usefulness of neuroimaging in
the prediction of therapy outcome of MDD and the benefits of acquiring
several kinds of longitudinal neuroimaging data. Our findings demon-
strate that in the prediction of treatment response, task-based and
resting-state neuroimaging modalities are complementary rather than
redundant [8]. Critically, our findings may inform future studies eval-
uating if combining neuroimaging data can help to formulate perso-
nalized treatment recommendations, thereby minimizing unnecessary
treatment and the associated suffering and health care costs. This
strategy may be an important step in the process of establishing pre-
cision medicine in psychiatry.
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